Acceptor atoms, 64
A.C. equivalent circuit, 248
A. C. load line, 251
Active region, 475
Alpha, 148
Amplitude modulation, 414
Amplification, 146
Amplifier:
 Class A power, 312
 Class B power, 312
 Class C power, 313
 Class C tuned, 402
 direct coupled, 299
 distortion in, 311
AND gate, 740
Anode, 33
Antenna, 413
Astable multivibrator, 478
Audio amplifier, 307
Avalanche breakdown, 72
Barrier potential, 67
Base, 143
Bel power gain, 283
Bel voltage gain, 284
Beta, 153
Binary system, 730
Bipolar transistor, 146
Bi-stable multivibrator, 482
Boolean algebra, 748
Breakdown:
 Avalanche, 72
 Zener, 108
Bridge rectifier, 92
Bypass capacitor, 242
Capacitor filter, 103
Cathode, 33
Cathode ray oscilloscope, 616
CE amplifier, 164
Chassis, 24
Chip, semiconductor, 628
Choke input filter, 104
Clampers, 495
Class A operation, 312
Class B operation, 312
Class C operation, 313
Band:
 conduction, 51
 valence, 51
Bandwidth, 284
Clippers, 487
Collector, 143
Collector feedback bias, 209
Colpitts oscillator, 372
CB amplifier, 148
Complementary-symmetry, 330
Conduction band, 51
Constant current source, 9
Constant voltage source, 8
Coupling capacitor, 242
Covalent bond, 56
Crystal oscillator, 383
Current feedback, 347
Current gain, 173
Cut-off frequency, 285

D

D. C. amplifier, 299
D. C. equivalent circuit, 247
Decibel, 283
Depletion layer, 67
Diac, 586
Differential amplifier, 664-687
Diffusion, 67
Digital circuit, 730
Diode circuits, 76-124
Direct coupling, 299
Discrete circuit, 627
Distortion, 311
Donor atom, 63
Doping, 62
Double based diode, 590
Drain-source curve, 511
Driver stage, 325
Dynamic resistance, 79
Dual-in-line pack, 635

E

Efficiency:
Half-wave rectifier, 88

F

Full-wave rectifier, 94
Electromagnetic deflection, 618
Electrons, 4
Electron emission, 28-37
Electron gun, 617
Electron-hole pair, 61
Emitter, 143
Emitter follower, 349
Encoder, 746
Energy band theory, 50
Equivalent circuit of amplifier, 272
Equivalent circuit with signal source, 272
Epitaxial layer, 630
Exclusive OR gate, 744
Extrinsic semiconductor, 62
Expression for collector: efficiency, 313

G

Gain:
 power, 173
gate, 507

H

Hartley oscillator, 374
<table>
<thead>
<tr>
<th>Index</th>
<th>777</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holding current</td>
<td>558</td>
</tr>
<tr>
<td>Hole current</td>
<td>61</td>
</tr>
<tr>
<td>Heat sink</td>
<td>322</td>
</tr>
<tr>
<td>Hybrid</td>
<td>643</td>
</tr>
</tbody>
</table>

I
- Inductor filter, 104
- Insulated gate, 536
- Integrated circuit, 628
- Interstage coupling, 281
- Intermediate frequency, 434
- Intrinsic semiconductor, 62
- Intrinsic stand off ratio, 592
- Impedance matching, 296
- Input impedance, 172
J
- Junction, pn, 66
- Junction diode, 77
- Junction transistor, 142

K
- Knee voltage, 72

L
- Large signal operation, 312
- LC oscillators, 371–376
- Leakage current, 71
- Light-emitting diode (LED), 126
- Load D.C. and A.C., 248, 249
- Load line:
 - a.c., 251
 - d.c., 249
- Local oscillator, 433
- Logic gates, 738

M
- Max. A.C. power output, 314
- Max. collector efficiency, 314
- Majority carriers, 65
- Microelectronics, 627
- Minority carriers, 65
- Modulation:
 - AM, 414
 - FM, 426
 - Monolithic IC, 629
 - MOSFET, 535
 - Multicolour LEDs, 128
 - Multivibrators:
 - astable, 478
 - bistable, 482
 - monostable, 480
N
- NAND gate, 742
- Negative feedback, 336
- n-p-n transistor, 142
- n-type semiconductor, 62
- Noise, 311
- NOR gate, 743
- NOT gate, 742

O
- Operational Amplifiers, 662-728
 - Block diagram, 663
 - Input/output Polarity relation, 689
 - Voltage gain, 688
 - Values of supply voltage, 690
- Optoisolator, 133
- OR gate, 739
- Oscillators:
 - Collpits, 372
 - Crystal, 383
 - Hartley, 374
 - L.C., 371-376
 - Phase shift, 377
 - Tuned collector, 371
 - Wein bridge, 378
- Oscilloscope, 616
- Output resistance, 172
- Over voltage detector, 595
- Oxide coated emitter, 32
P
- p-type semiconductor, 64
- Peak inverse voltage, 73
- Pentavalent atoms, 63
<table>
<thead>
<tr>
<th>Page</th>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>377</td>
<td>Phase-shift oscillator</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>Photo-diode</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Photo-emission</td>
<td></td>
</tr>
<tr>
<td>380</td>
<td>Piezo-electric effect</td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>π-filter</td>
<td></td>
</tr>
<tr>
<td>513</td>
<td>Pinch off voltage</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>p-n-junction</td>
<td></td>
</tr>
<tr>
<td>142</td>
<td>p-n-p transistor</td>
<td></td>
</tr>
<tr>
<td>487</td>
<td>Positive clipper</td>
<td></td>
</tr>
<tr>
<td>311</td>
<td>Power dissipation</td>
<td></td>
</tr>
<tr>
<td>173</td>
<td>Power gain</td>
<td></td>
</tr>
<tr>
<td>326</td>
<td>Push-pull amplifier</td>
<td></td>
</tr>
<tr>
<td>381</td>
<td>Quartz crystal</td>
<td></td>
</tr>
<tr>
<td>167</td>
<td>Quiescent point</td>
<td></td>
</tr>
<tr>
<td>483</td>
<td>RC differentiator</td>
<td></td>
</tr>
<tr>
<td>486</td>
<td>RC integrator</td>
<td></td>
</tr>
<tr>
<td>377</td>
<td>RC oscillator</td>
<td></td>
</tr>
<tr>
<td>289</td>
<td>RC coupling</td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>Rectifiers</td>
<td></td>
</tr>
<tr>
<td>595</td>
<td>Relaxation oscillator</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>Reverse bias</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>Ripple factor</td>
<td></td>
</tr>
<tr>
<td>473</td>
<td>Saturation collector current</td>
<td></td>
</tr>
<tr>
<td>474</td>
<td>Saturation region</td>
<td></td>
</tr>
<tr>
<td>619</td>
<td>Sawtooth wave</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Secondary emission</td>
<td></td>
</tr>
<tr>
<td>555</td>
<td>SCR</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>Semiconductors</td>
<td></td>
</tr>
<tr>
<td>137</td>
<td>Shockley diode</td>
<td></td>
</tr>
<tr>
<td>418</td>
<td>Sideband frequencies</td>
<td></td>
</tr>
<tr>
<td>197</td>
<td>Stabilisation</td>
<td></td>
</tr>
<tr>
<td>592</td>
<td>Stand off voltage</td>
<td></td>
</tr>
<tr>
<td>629</td>
<td>Substrate</td>
<td></td>
</tr>
<tr>
<td>433</td>
<td>Superheterodyne receiver</td>
<td></td>
</tr>
<tr>
<td>197</td>
<td>Thermal runaway</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Thermionic emission</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Thevenin's theorem</td>
<td></td>
</tr>
<tr>
<td>555</td>
<td>Thyristor</td>
<td></td>
</tr>
<tr>
<td>294</td>
<td>Transformer coupling</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transistor:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AM modulator</td>
<td></td>
</tr>
<tr>
<td>148</td>
<td>CB</td>
<td></td>
</tr>
<tr>
<td>162</td>
<td>CC</td>
<td></td>
</tr>
<tr>
<td>152</td>
<td>CE</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>Trivalent impurity</td>
<td></td>
</tr>
<tr>
<td>371</td>
<td>Tuned collector oscillator</td>
<td></td>
</tr>
<tr>
<td>134</td>
<td>Tunnel diode</td>
<td></td>
</tr>
<tr>
<td>589</td>
<td>Uni-junction transistor</td>
<td></td>
</tr>
<tr>
<td>510</td>
<td>Unipolar transistor</td>
<td></td>
</tr>
<tr>
<td>136</td>
<td>Varactor-diode</td>
<td></td>
</tr>
<tr>
<td>212</td>
<td>Voltage divider bias</td>
<td></td>
</tr>
<tr>
<td>448</td>
<td>Voltage regulator</td>
<td></td>
</tr>
<tr>
<td>609</td>
<td>Voltmeter, electronic</td>
<td></td>
</tr>
<tr>
<td>378</td>
<td>Wein bridge oscillator</td>
<td></td>
</tr>
<tr>
<td>631</td>
<td>Window</td>
<td></td>
</tr>
<tr>
<td></td>
<td>X-cut</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Y-cut</td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>Zener breakdown</td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>Zener diode</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>Zener diode regulator</td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>Zener symbol</td>
<td></td>
</tr>
</tbody>
</table>