
save on your computer as .pdf: 1-100 Transistor circuits.pdf

Go to: 101-200 Transistor Circuits Go to: 100 IC Circuits

See TALKING ELECTRONICS WEBSITE

email Colin Mitchell: talking@tpg.com.au

INTRODUCTION

This e-book contains 100 transistor circuits. The second part of this e-book will contain a further 100 circuits.
Most of them can be made with components from your "junk box" and hopefully you can put them together in less than an hour.
The idea of this book is to get you into the fun of putting things together and there's nothing more rewarding than seeing something work.
It's amazing what you can do with a few transistors and some additional components. And this is the place to start.
Most of the circuits are "stand-alone" and produce a result with as little as 5 parts.
We have even provided a simple way to produce your own speaker transformer by winding turns on a piece of ferrite rod. Many components can be obtained from transistor radios, toys and other pieces of discarded equipment you will find all over the place.
To save space we have not provided lengthy explanations of how the circuits work. This has already been covered in TALKING ELECTRONICS Basic Electronics Course, and can be obtained on a CD for $\$ 10.00$ (posted to anywhere in the world) See Talking Electronics website for more details: http://www.talkingelectronics.com
Transistor data is at the bottom of this page and a transistor tester circuit is also provided. There are lots of categories and I am sure many of the circuits will be new to you, because some of them have been designed recently by me.
Basically there are two types of transistor: PNP and NPN.
We have labelled the NPN transistor as BC547. This means you can use ANY NPN transistor, such
as 2N2222, BC108, 2N3704, BC337 and hundreds of others. Some circuits use TUN for Transistor Universal NPN and this is the same as our reasoning - the transistor-type is just to let you know it is not critical.
BC557 can be replaced by: 2N3906, BC327 and many others.
Don't worry too much about the transistor-type. Just make sure it is NPN, it this is the type needed.
If it is an unknown transistor-type, you need to identify the leads then put it in the circuit.
You have a choice of building a circuit "in the air," or using an experimenter board (solderless breadboard) or a matrix board or even a homemade printed circuit board. The choice is up to you but the idea is to keep the cost to a minimum - so don't buy anything expensive.
If you take parts from old equipment it will be best to solder them together "in the air" (as they will not be suitable for placing on a solderless breadboard as the leads will be bent and very short).
This way they can be re-used again and again.
No matter what you do, I know you will be keen to hear some of the "noisy" circuits in operation.
Before you start, the home-made Speaker Transformer project and Transistor Tester are the first things you should look at.
If you are starting in electronics, see the World's Simplest Circuit. It shows how a transistor works and three transistors in the $\mathbf{8}$ Million Gain project will detect microscopic levels of static electricity! You can look through the Index but the names of the projects don't give you a full description of what they do. You need to look at the circuits. And I am sure you will.

KIT OF PARTS

Talking Electronics supplies a kit of parts that can be used to build the majority of the circuits in
this book.
The kit costs $\$ 15.00$ plus postage.

buy now Kit for Transistor Circuits $\$ 15.00$

A kit of components to make many of the circuits presented in this eBook is available for $\$ 15.00$ plus $\$ 7.00$ post. Or email Colin Mitchell: talking@tpg.com.au

The kit contains the following components: (plus extra 30 resistors and 10 capacitors for experimenting), plus:

3-47R
5-220R
5-470R
5-1k
5-4k7
5-10k
2-33k
4-100k
4-1M
1-10k mini pot
1-100k mini pot
2-10n
2-100n
5-10u electrolytics
5-100u electrolytics
5-1N4148 signal diodes
6-BC547 transistors - NPN - 100mA
2 - BC557 transistors - PNP - 100mA
1 - BC338 transistor - NPN - 800mA
3-BD679 Darlington transistors - NPN - 4amp
5 - red LEDs
5 - green LEDs
5 - orange LEDs
2 - super-bright WHITE LEDs - 20,000mcd
$1-3 \mathrm{~mm}$ or 5 mm flashing LED
1-mini 8R speaker
1 - mini piezo
1 - LDR (Light Dependent Resistor)
1 - electret microphone
$1 \mathrm{~m}-0.25 \mathrm{~mm}$ wire
$1 \mathrm{~m}-0.5 \mathrm{~mm}$ wire
$1-10 \mathrm{mH}$ inductor
1 - push button
5 - tactile push buttons
1 - Experimenter Board (will take 8, 14 and 16 pin chips)
5 - mini Matrix Boards: 7×11 hole,
11×15 hole, 6×40 hole, surface-mount 6×40 hole board or others.

Photo of kit of components. Each batch is slightly different:

There are more components than you think. . . plus an extra bag of approx 30 components. The 8 little components are switches and the LDR and flashing LED is hiding.
In many cases, a resistor or capacitor not in the kit, can be created by putting two resistors or capacitors in series or parallel or the next higher or lower value can be used.

Don't think transistor technology is obsolete. Many complex circuits have one or more transistors to act as buffers, amplifiers or to connect one block to another. It is absolutely essential to understand this area of electronics if you want to carry out design-work or build a simple circuit to carry out a task.

We also have an eBook: THE TRANSISTOR AMPLIFIER with over 100 different transistor circuits . . . proving the transistor can be connected in so many ways.

THEORY

Read the full article HERE (the Transistor Amplifier eBook) The first thing you will want to know is: HOW DOES A TRANSISTOR WORK?

Diagram "A" shows an NPN transistor with the legs covering the symbol showing the name for each lead.
The transistor is a "general purpose" type and and is the smallest and cheapest type you can get. The number on the transistor will change according to the country where the circuit was designed but the types we refer to are all the SAME.
Diagram "B" shows two different "general purpose" transistors and the different pinouts. You need to refer to data sheets or test the transistor to find the correct pinout.
Diagram "C" shows the equivalent of a transistor as a water valve. As more current (water) enters the base, more water flows from the collector to the emitter.
Diagram " D " shows the transistor connected to the power rails. The collector connects to a resistor called a LOAD and the emitter connects to the 0 v rail or earth or "ground."
Diagram "E" shows the transistor in SELF BIAS mode. This is called a COMMON EMITTER stage and the resistance of the BASE BIAS RESISTOR is selected so the voltage on the collector is half-rail voltage. In this case it is 2.5 v .
To keep the theory simple, here's how you do it. Use 22k as the load resistance.
Select the base bias resistor until the measured voltage on the collector 2.5 v . The base bias will
be about 2M2.
This is how the transistor reacts to the base bias resistor:
The base bias resistor feeds a small current into the base and this makes the transistor turn on and create a current-flow though the collector-emitter leads.
This causes the same current to flow through the load resistor and a voltage-drop is created across this resistor. This lowers the voltage on the collector.
The lower voltage causes a lower current to flow into the base and the transistor stops turning on a slight amount. The transistor very quickly settles down to allowing a certain current to flow through the collector-emitter and produce a voltage at the collector that is just sufficient to allow the right amount of current to enter the base.
Diagram " F " shows the transistor being turned on via a finger. Press hard on the two wires and the LED will illuminate brighter. As you press harder, the resistance of your finger decreases. This allows more current to flow into the base and the transistor turns on harder.
Diagram "G" shows a second transistor to "amplify the effect of your finger" and the LED illuminates about 100 times brighter.
Diagram "H" shows the effect of putting a capacitor on the base lead. The capacitor must be uncharged and when you apply pressure, the LED will flash brightly then go off. This is because the capacitor gets charged when you touch the wires. As soon as it is charged NO MORE CURRENT flows though it. The first transistor stops receiving current and the circuit does not keep the LED illuminated. To get the circuit to work again, the capacitor must be discharged. This is a simple concept of how a capacitor works. A large-value capacitor will keep the LED illuminated for a longer period of time.
Diagram "I" shows the effect of putting a capacitor on the output. It must be uncharged for this effect to work. We know from Diagram G that the circuit will stay on when the wires are touched but when a capacitor is placed in the output, it gets charged when the circuit turns ON and only allows the LED to flash.

1. This is a simple explanation of how a transistor works. It amplifies the current going into the base about 100 times and the higher current flowing through the collector-emitter leads will illuminate a LED.
2. A capacitor allows current to flow through it until it gets charged. It must be discharged to see the effect again.

Read the full article HERE

INCREASING THE VOLTAGE

You can change the voltage of many circuits from 6 v to $12 v$ or $3 v$ to $6 v$ without altering any of the values. I can see instantly if this is possible due to the value of the components and here's how I do it:
Look at the value of the resistors driving the load(s). Work out the current entering each load and see if it is less than the maximum allowable.
Then, take a current reading on the lower voltage. Increase the voltage to the higher value and take another reading.
In most cases the current will increase to double the value (or a little higher than twice the original value). If it is over 250% higher, you need to feel each of the components and see if any are getting excessively hot.

If any LEDs are taking excessive current, double the value of the current-limiting resistor. If any transistor is getting hot, increase the value of the load resistor.
In most cases, when the voltage is doubled, the current will will crease to double the original. This means the circuit will consume 4 times the original energy.
This is just a broad suggestion to answer the hundreds of emails I get on this topic.

Note: All circuits use $1 / 4$ watt resistors unless specified on the diagram.

Adjustable High Current Power	Microphone Pre-amplifier
Supply	Mobile Phone Alert-2
Aerial Amplifier	Model Railway Point Motor Driver
Alarm Using 4 buttons	Model Railway time
Amazing LED Flasher - for Bikes	Motor Speed Controller
Ammeter 0-1A	Motor Speed Control (simple)
Amplifier uses speaker as	Movement Detector
microphone	Multimeter - Voltage of Bench Supply
AM Radio - 5 Transistor	Music On Hold
Amplifying a Digital Signal	Music to Colour
Arc Welder Simulator for Model	Nail Finder
Railways	NiCd Charger
Audio Amplifier (mini)	Night Light - see also Automatic Light
Automatic Battery Charger	On-Off via push Buttons
Automatic Bathroom Light	OP-AMP -using 3 transistors
Automatic Garden Light	Passage PIR LED Light
Automatic Light - see also Night Light	Phaser Gun
Automatic PIR LED Light	Phase-Shift Oscillator - good design
Automatic Solar Light	Phone Alert
Battery Capacity	Phone Alert-2 (for mobile phone)
Battery Charger - 12v Automatic	Phone Bug
Battery Charger MkII-12v trickle	Phone Tape-1
charger	Phone Tape-2
Battery-Low Beeper	Phone Tape-3
Battery Monitor MkI	Phone Tape-4 - using FETs
Battery Monitor Mkll	Phone Transmitter-1
Bench Power Supply	Phone Transmitter-2
Bike Flasher Bike Flasher - amazing	Phone Transmitter-3
Bike Turning Signal	Phone Transmitter-4
Beacon (Warning Beacon 12v)	Phase-shift Oscillator
Beeper Bug	Plant Needs Watering
Blocking Oscillator	PIC Programmer Circuits 1,2 3
Blown Fuse Indicator	Piezo Buzzer - how it works
Book Light	PIR Detector
Boom Gate Lights	PIR LED Light
Bootstrap Amplifier	Point Motor Driver
Boxes	Powering a LED
Breakdown Beacon	Power ON
Bright Flash from Flat Battery	Power Supplies - Fixed
Buck Converter for LEDs 48mA	Power Supplies - Adjustable LMxx
Buck Converter for LEDs 170mA	series
Buck Converter for LEDs 210 mA	Power Supplies - Adjustable 78xx
Buck Converter for LEDs 250mA	series
Buck Converter for 3watt LED	Power Supplies - Adjustable from 0v
Buck Regulator 12v to 5v	Power Supply - Inductively Coupled

Cable Tracer	Power Zener
Camera Activator	Project can turn ON when DARK
Capacitor Discharge Unit MkII (CDU2)	Push-On Push OFF
Trains	PWM Controller
Capacitor Tester	Quiz Timer
Car Detector (loop Detector)	Radio- AM - 5 Transistor
Car Light Extender MkII	Railway time
Car Light Alert	Random Blinking LEDs
CFL Driver (Compact Fluorescent) 5w	Rechargeable Battery Capacity
Charge-current without a multimeter	Rectifying a Voltage
Chaser 3 LED 5 LED Chaser using	Relay Chatter
FETs	Relay OFF Delay
Charger - NiCd	Relay Protection
Charging Battery via Solar Panel	Resistor Colour Code
Chip Programmer (PIC) Circuits 1,2 3	Resistor Colour Code - 4, 5 and 6
Circuit Symbols Complete list of	Bands
Symbols	Reversing a Motor
Clock - Make Time Fly	Robo Roller
Clap Switch - see also VOX	Robot
Clap Switch - turns LED on for 15	Robot Man - Multivibrator
seconds	Safe 240v Supply
Code Lock	Schmitt Trigger
Code Pad	SCR with Transistors
Coin Counter	Second Simplest Circuit
Colour Code for Resistors - all	Sequencer
resistors	Shake Tic Tac LED Torch
Colpitts Oscillator	Signal by-pass
Combo-2 - Transistor tester	Signal Injector
Constant Current	Simple Flasher
Constant Current Drives two 3-watt	Simple Logic Probe
LEDs	Simple Touch-ON Touch-OFF Switch
Constant Current for 12 v car	Simplest Transistor Tester
Constant Current Source Cct 2 Cct 4	Siren
Constant Current 1.5amp	Siren
Continuity Tester	Soft Start power supply
Courtesy Light Extender for Cars Mkll	Solar Engine
Crossing Lights	Solar Engine Type-3
Crystal Tester	Solar Light - Automatic
Dancing Flower	Solar Panel - charging a battery
Dancing Flower with Speed Control	Solar Photovore
Dark Detector for Project	Sound to Light
Dark Detector with beep Alarm	Sound Triggered LED
Darlington Transistor	Speaker Transformer
Decaying Flasher	Speed Control - Motor
Delay Before LED turns ON	Spy Amplifier
Delay Turn-off - turns off circuit after	Strength Tester

delay	Sun Eater-1
"Divide-by" Circuit	Sun Eater-1A
Door-Knob Alarm	Super Ear
Driving a LED	Super-Alpha Pair (Darlington
Drive 20 LEDs	Transistor)
Dynamic Microphone Amplifier	Supply Voltage Monitor
Dynamo Voltage Doubler	Switch Debouncer
Electronic Drums	Sziklai transistor
Electronic Filter	Telephone amplifier
Emergency Light	Telephone Bug see also Transmitter-
Fading LED	1 -2
Ferret Finder	Telephone Taping - see Phone Tape
FET Chaser	Testing A Transistor
Field Strength Meter for 27 MHz	Ticking Bomb
Flasher (simple)	Time Delay Circuits
Flashing 2 LEDs	Toggle a Push Button using 2 relays
Flash from Flat Battery	Toggle A Relay
Flashing Beacon (12v Warning Beacon)	Toroid - using a toroid Inductor
Flashing LED - See Flasher Circuits on	Touch Switch
web	Touch-ON Touch-OFF Switch
see: 3 more in: 1-100	Touch Switch Circuits
circuits	Tracking Transmitter
see Bright Flash from Flat	Track Polarity - model railway
Battery	Train Detectors
see Flashing 2 LEDs	Train Throttle
see LED Driver 1.5 v White	Transformerless Power Supply
LED	Transistor Amplifier
see LED Flasher	Transistor Pinouts
see LED Flasher 1-Transistor	Transistor tester - Combo-2
see LEDs Flash for 5 secs	Transistor Tester-1
see White LED Flasher	Transistor Tester-2
see Dual 3v White LED	Transistor and LED Tester - 3
Flasher	Transistor and Capacitor Tester-4
see Dual 1v5 White LED	Trickle Charger 12v
Flasher	Turn Indicator Alarm
see 1.5 v LED Driver	Vehicle Detector loop Detector
see 1.5 v LEDFlasher	VHF Aerial Amplifier
see 3 v White LED flasher	Vibrating VU Indicator
Flashing tail-light (indicator)	Voice Controlled Switch - see VOX
Fluorescent Inverter for 12 v supply	Voltage Doubler
FM Transmitters - 11 circuits	Voltage Multipliers
Fog Horn	VOX - see The Transistor Amplifier
FRED Photopopper	eBook
Fridge Alarm	Voyager - FM Bug
Fuse Inidicator	Wailing Siren
Gold Detector	Walkie Talkie

GOLD DETECTORS - article
Guitar Fuzz
Hartley Oscillator
Hex Bug
H-Bridge
Headlight Extender \& see Light
Extender Cars
Heads or Tails
Hearing Aid Constant Volume
Hearing Aid Push-Pull Output
Hearing Aid 1.5v Supply
Hee Haw Siren
High Current from old cells
High Current Power Supply
High-Low Voltage Cutout
IR LED Driver
IC Radio
Increasing the output current
Increasing the Voltage - see above
Inductively Coupled Power Supply
Intercom
Latching A Push Button
Latching Relay Toggle A Relay Toggle
(Sw)
LED Detects Light
LED Detects light
LED Driver 1.5v White LED
LED Driver for 12v car IR LED Driver
LED Flasher - and see 3 more in this
list
LED Flasher 1-Transistor
LED and Transistor Tester
LED Flashes 3 times when power
applied
LED 1-watt
LED 1.5 watt
LED Fader
LED flasher 3v White LED
LEDs for 12v car
LEDs on 240v
LED Strip - passage Light
LED Torch
LED Torch with Adj Brightness
LED Torch with 1.5v Supply
LED Turning Flasher
Lie Detector

GOLD DETECTORS - article
Guitar Fuzz
Hartley Oscillator
Hex Bug
H-Bridge
Headlight Extender \& see Light
Extender Cars
Heads or Tails
Hearing Aid Constant Volume
Hearing Aid Push-Pull Output
Hearing Aid 1.5v Supply
Hee Haw Siren
High Current from old cells
High Current Power Supply
High-Low Voltage Cutout
IR LED Driver
C Radio
Increasing the output current
Increasing the Voltage - see above
Inductively Coupled Power Supply
intercom
Latching A Push Button
Latching Relay Toggle A Relay Toggle
(Sw)
LED Detects Light
LED Detects light
LED Driver 1.5 v White LED
LED Driver for 12v car IR LED Driver
LED Flasher - and see 3 more in this
list
LED Flasher 1-Transistor
LED and Transistor Tester
LED Flashes 3 times when power
applied
LED 1-watt
LED 1.5 watt
LED Fader
LED flasher $3 v$ White LED
LEDs for 12 v car
LEDs on 240v
LED Strip - passage Light
LED Torch
LED Torch with Adj Brightness
LED Torch with $1.5 v$ Supply
LED Turning Flasher
$\underline{\text { Lie Detector }}$

Walkie Talkie with LM386
Walkie Talkie - 5 Tr - circuit 1
Walkie Talkie - 5 Tr - circuit 2
Warning Beacon
Water Level Detector
Worlds Simplest Circuit
White LED Flasher
White LED Flasher - 3 v
White LED with Adj Brightness
White Line Follower
White Noise Generator
Xtal Tester
Zapper - 160v
Zener Diode (making)
Zener Diode Tester
0-1A Ammeter
1 watt LED - a very good design
1-watt LED - make your own
1.5 watt LED
1.5 v to 10 v Inverter
1.5 v LED Flasher
1.5 v White LED Driver

3-Phase Generator
3v White LED flasher
3 watt LED Buck Converter for
$3 v 3$ from 5v Supply
5v from old cells - circuit1
5 v from old cells - circuit2
5 v Regulated Supply from 3 v
5 LED Chaser
5 Transistor Radio
6 to 12 watt Fluoro Inverter
8 Million Gain
9v Supply from 3v
10 LEDs on 9v
10 Second Delay
12v Battery Charger - Automatic
12v Flashing Beacon (Warning
Beacon)
12v Relay on 6v
12v Trickle Charger
$12 v$ to $5 v$ Buck Converter
12v Supply
18 LEDs using a 3.7 v Li-Ion CELL
20 LEDs on 12 v supply
20watt Fluoro Inverter

RESISTOR COLOUR CODE

SAFE 240v SUPPLY

When working on any project that connects to the "mains," it is important to take all precautions to prevent electrocution.
This project provides 240 v AC but the current it limited to 60 mA if a 15 watt transformer is used. Although the output can produce a nasty shock and the voltage will kill you, the circuit provides isolation from the mains and if a short-circuit occurs, it will not blow a fuse, but the transformers will get very hot as start to buzz.
You can use any two identical transformers and the wattage of either transformer will determine the maximum output wattage.
If you don't use identical transformers, the output voltage will be higher or lower than the "mains" voltage and the wattage will be determined by the smaller transformer.

This arrangement is not perfectly safe, but is the best you can
get when working on projects such as switch-mode power supplies, capacitor-fed down-lights etc.

RECHARGEABLE BATTERY CAPACITY

This simple circuit tests the capacity of a rechargeable cell. Connect a 4R7 (yellow-purple-gold-gold) resistor across the terminals of a clock mechanism and fit a fully charged rechargeable cell. Set the hands to 12 O'Clock and the clock will let you know how long the cell lasted until the voltage reached about 0.8 v .
Now fit another cell and see how long it lasts. You cannot work out the exact capacity of a cell but you can compare one cell with another. The initial current is about 250 mA for a 1.2 v cell.

This circuit indicates when a fuse is "blown."

PLANT NEEDS WATERING

This circuit indicates when the soil is dry and the plant needs watering. The circuit does not have a current-limiting resistor because the base resistor is very high and the current through the transistor is only 2 mA . Don't change the supply voltage or the 220k as these two values are correct for this circuit.

THE SOLAR PANEL

This will clear-up a lot of mysteries of the solar panel.
Many solar panels produce $16 \mathrm{v}-18 \mathrm{v}$ when lightly loaded, while other 12 v solar panels will not charge a 12 v battery.
Some panels say "nominal voltage," some do not give any value other than 6 v or 12 v , and some specify the wrong voltage. You can't work with vague specifications. You need to know accurate details to charge a battery from a solar panel.
There are 3 things you have to know before buying a panel or connecting a panel to a battery.

1. The UNLOADED VOLTAGE.

2. The voltage of the panel when delivering the rated current. Called the RATED VOLTAGE
3. The CURRENT.
4. The Unloaded Voltage is the voltage produced by the panel when it is lightly loaded. This voltage is very important because a 12 v battery will produce a "floating voltage" of about 15 v when it is fully charged and it will gradually rise to this voltage during the charging period. This means the panel must be able to deliver more than 15 v so it will charge a 12 v battery.
Sometimes there is a diode and a charging circuit between the panel and battery and these devices will drop a small voltage, so the panel must produce a voltage high enough to allow for them. The Unloaded Voltage can sometimes be determined by counting the
number of cells on the panel as each cell will produce 0.6 v . If you cannot see the individual cells, use a multimeter to read the voltage under good illumination and watch the voltage rise. You can place a 100 ohm resistor across the panel to take readings.
5. The RATED VOLTAGE is the guaranteed voltage the panel will deliver when full current is flowing. This can also be called the Nominal Voltage, however don't take anything for certain. Take readings of your own. The Rated Voltage (and current) is produced when the panel receives bright sunlight. This may occur for only a very small portion of the day.

You can clearly see the 11 cells of this panel and it produces 6.6 v when lightly loaded. It will barely produce 6 v when loaded and this is NOT ENOUGH to charge a 6 v battery.

This panel claims to be 18 v , but it clearly only produces 14.4 v . This is not suitable for charging a 12 v battery. When you add a protection diode, the output voltage will be 13.8 v . A flat battery being charged will reach 13.8 v very quickly and it will not be charged any further. That's why the output voltage of a panel is so important.

The panel needs to produce 17 v to 18 v so it will have a small "overhead" voltage when the battery reaches 14.4 v and
it will still
be able to
supply
energy into
the battery
to
complete
the
charging
process.
3. The Rated Current is the maximum current the panel will produce when receiving full sunlight.
The current of a panel can be worked out by knowing the wattage and dividing by the unloaded voltage.
A 20 watt 18 v panel will deliver about 1 amp .

CHARGING A BATTERY

A solar panel can be used to directly charge a battery without any other components. Simply connect the panel to the battery and it will charge when the panel receives bright sunlight - providing the panel produces a voltage least 30% to 50% more than the battery you are charging.
Here's some amazing facts:
The voltage of the panel does not matter and the voltage of the battery does not matter. You can connect any panel to any battery - providing the panel produces a voltage least 30% to 50% more than the battery you are charging.
The output voltage of the panel will simply adapt to the voltage of the battery. Even though there is a voltage mismatch, there is NO "lost" or wasted energy. An 18 v panel "drives into" a 12 v battery with the maximum current it can produce when the intensity of the sun is a maximum. To prevent too-much mismatch, it is suggested you keep the panel voltage to within 150% of the battery voltage. (6 v battery -9 v max panel, 12 v battery - 18v max panel, 24v battery - 36v max panel).
But here's the important point: To prevent overcharging the battery, the wattage of the panel is important.
If the wattage of an 18 v panel is 6 watts , the current is $6 / 18=0.33 \mathrm{amps}=$ 330 mA .
To prevent overcharging a battery, the charging current should not be more than one-tenth its amp-hr capacity.
For instance, a 2,000mAhr set of cells should not be charged at a rate higher than 200 mA for 14 hours. This is called its 14 -hour rate.
But this rating is a CONSTANT RATING and since a solar panel produces an output for about 8 hours per day, you can increase the charging current
to 330 mA for 8 hours. This will deliver the energy to fully charge the cells. That's why a 6 watt panel can be directly connected to a set of (nearly fully discharged) $2,000 \mathrm{mAhr}$ cells.
For a 12 v 1.2 AHr battery, the charging current will be 100 mA for 12 hours or 330 mA for 4 hours and a regulator circuit will be needed to prevent overcharging.
For a 12 v 4.5 AHr battery, the charging current will be 375 mA for 12 hours and a larger panel will be needed.

ADDING A DIODE

Some solar panels will discharge the battery (a small amount) when it is not
receiving sunlight and a diode can be added to prevent discharge. This diode drops 0.6 v when the panel is operating and will reduce the maximum current (slightly) when the panel is charging the battery. If the diode is Schottky, the voltage-drop is 0.35 v .
Some panels include this diode - called a BYPASS DIODE.

PREVENTING OVERCHARGING

There are two ways to prevent overcharging the battery.

1. Discharge the battery nearly fully each night and use a panel that will only deliver 120% of the amp-hour capacity of the battery the following day.

2. Add a VOLTAGE REGULATOR.

Here is the simplest and cheapest regulator to charge a 12 v battery.
Full details of how the circuit works and setting up the circuit is HERE. The solar panel must be able to produce at least 16 v on NO LOAD. (25-28 cells). The diagram only shows a 24 cell panel - it should be 28 cells. The only other thing you have to consider is the wattage of the panel. This will depend on how fast you want to charge the battery and/or how much energy you remove from the battery each day and/or the amp-Hr capacity of the battery.
For instance, a 12v 1.2A-Hr battery contains 14watt-hours of energy. An 6 watt panel (16 v to 18 v) will deliver 18 watt-hours (in bright sunlight) in 3 hours. The battery will be fully charged in 3 hours.

SOLAR BATTERY CHARGER / REGULATOR

The pot is adjusted so the relay drops-out at 13.7 v

The charger will turn ON when the voltage drops to about 12.5 v .
The 100R Dummy LOAD will absorb 3.25 watts and that is the maximum wattage the panel will produce with 100 R load.

CHARGE CURRENT

Here is a very clever circuit to find the charging current, if you don't have a

multimeter.
Connect a 22R 0.25 watt resistor in series with the battery and hold your finger on the resistor. The resistor will get very hot if 100 mA or more is flowing.
This resistor will indicate ONE WATT of energy is flowing into the battery, but we are using a 0.25 watt resistor to measure the heat as this represents "LOST ENERGY" and we want to keep the losses to a minimum.
To get some idea of 0.25 watt of heat, place a 560 R 0.25 watt resistor across the terminals of a battery.
This is 250 mW of heat and is your reference.
A 1.2A-Hr 12 volt battery has 14 watts of energy and if you are charging at ONE WATT, it will take about 16 hours to fully charge the battery.

This circuit can be used when charging a battery from your car, from a solar panel, a battery charger or a pulsed solar-charging circuit. It is also a SAFETY CIRCUIT as it will limit the current to 100 mA . If the current is higher than 130 mA , the resistor will hot and start to smell.

Note: when the $22 R$ is removed, the current flowing into the battery WILL INCREASE.
The increase may be only 10% from some chargers, but can be as high as 100% OR MORE if the battery is connected to the cigarette lighter plug in your car.

HIGH-LOW VOLTAGE CUT-OUT

This circuit will turn off the relay when the voltage is above or below the "set-points.";
You need either a variable power supply or a 12 v battery and an extra 1.5 v battery.
Turn the LOW voltage cutout trim pot to mid way and connect the 13.5 v supply. Turn the HIGH voltage trim pot to the high end and the relay will turn off.
Now turn the 1.5 v battery around the other way and adjust the LOW voltage trim pot to the 10.5 v supply.

See resistors from 0.22 ohm to $\mathbf{2 2 M}$ in full colour at bottom of this page and another resistor table

TESTING AN unknown TRANSISTOR

The first thing you may want to do is test an unknown transistor for COLLECTOR, BASE AND EMITTER. You also need to know if it is NPN or PNP. You need a cheap multimeter called an ANALOGUE METER - a multimeter with a scale and pointer (needle).
It will measure resistance values (normally used to test resistors) - (you can also test other components) and Voltage and Current. We use the resistance settings. It may have ranges such as "x10" "x100" "x1k" "x10"
Look at the resistance scale on the meter. It will be the top scale.
The scale starts at zero on the right and the high values are on the left. This is opposite to all the other scales. .
When the two probes are touched together, the needle swings FULL SCALE and reads "ZERO." Adjust the pot on the side of the meter to make the pointer read exactly zero.

How to read: "x10" "x100" "x1k" "x10"
Up-scale from the zero mark is "1"
When the needle swings to this position on the "x10" setting, the value is 10 ohms.
When the needle swings to "1" on the "x100" setting, the value is 100 ohms.

When the needle swings to "1" on the "x1k" setting, the value is 1,000 ohms $=$ 1k.
When the needle swings to "1" on the "x10k" setting, the value is 10,000 ohms $=$ 10k.
Use this to work out all the other values on the scale.
Resistance values get very close-together (and very inaccurate) at the high end of the scale. [This is just a point to note and does not affect testing a transistor.]

Step 1 - FINDING THE BASE and determining NPN or PNP

Get an unknown transistor and test it with a multimeter set to "x10"
Try the 6 combinations and when you have the black probe on a pin and the red probe touches the other pins and the meter swings nearly full scale, you have an NPN transistor. The black probe is BASE
If the red probe touches a pin and the black probe produces a swing on the other two pins, you have a PNP transistor. The red probe is BASE
If the needle swings FULL SCALE or if it swings for more than 2 readings, the transistor is FAULTY.

This is an NPN transistor
The black probe is the BASE

This is a PNP transistor The red probe is the BASE

Step 2 - FINDING THE COLLECTOR and EMITTER

Set the meter to "x10k."
For an NPN transistor, place the leads on the transistor and when you press hard on the two leads shown in the diagram below, the needle will swing almost full scale.

SIMPLEST TRANSISTOR TESTER

The simplest transistor tester uses a 9 v battery, 1 k resistor and a LED (any colour). Keep trying a transistor in all different combinations until you get one of the circuits below. When you push on the two leads, the LED will get brighter. The transistor will be NPN or PNP and the leads will be identified:

The leads of some transistors will need to be bent so the pins are in the same positions as shown in the diagrams. This helps you see how the transistor is being turned on. This works with NPN, PNP and Darlington transistors.

TRANSISTOR TESTER - 1

Transistor Tester - 1 project will test all types of transistors including Darlington and power. The circuit is set to test NPN types. To test PNP types, connect the 9 v battery around the other way at points A and B .

The transformer in the photo is a 10 mH choke with 150 turns of 0.01 mm wire wound over the 10 mH winding. The two original pins (with the red and black leads) go to the primary winding and the fine wires are called the Sec.
Connect the transformer either way in the circuit and if it does not work, reverse either the primary or secondary (but not both).
Almost any transformer will work and any speaker will be suitable.
If you use the speaker transformer described in the Home Made Speaker
Transformer article, use one-side of the primary.

TRANSISTOR TESTER-1 CIRCUIT

The 10 mH choke with 150 turns for the secondary

TRANSISTOR TESTER - 2
Here is another transistor tester.

This is basically a high gain amplifier with feedback that causes the LED to flash at a rate determined by the 10 u and 330k resistor.
Remove one of the transistors and insert the unknown transistor. When it is NPN with the pins as shown in the photo, the LED will flash. To turn the unit off, remove one of the transistors.

TRANSISTOR and LED TESTER - 3

Here is another transistor tester. And it also tests LEDs. See the full project: Transistor Tester
This circuit is basically a Joule Thief design with the coil (actually a transformer) increasing the 1.5 v supply to a higher voltage to illuminate one or two LEDs in series. The "LED Test" terminals uses the full voltage produced by the circuit and it will test any colour LED including a white LED. The two "coils" are wound on a 10 mm dia pen with 0.1 mm wire (very fine wire). All the components fit on a small PC board. A kit of parts for the project is a available from Talking Electronics for $\$ 4.00$ plus $\$ 3.00$ postage.

TRANSISTOR and LED TESTER

TRANSISTOR TESTER - 4 with ELECTROLYTIC TESTER
This circuit will test transistors and electrolytic capacitors from 1u to 220u for leakage, open, shorts and approx capacitance.
Build the circuit on a strip of PC board as shown in Transistor Tester-2 so the transistors can be replaced with a suspect transistor and an electrolytic can be fitted in place of the link for the capacitor.
When an electrolytic is fitted to the circuit, it will produce a wailing and eventually stop. If the tone continues, the electrolytic is leaky. If the tone is not produced, the electrolytic is open. If the tone does not change, the electrolytic is shorted.

SECOND SIMPLEST CIRCUIT

This the second simplest circuit in the world. A second transistor has been added in place of your fingers. This transistor has a gain of about 200 and when you touch the points shown on the diagram, the LED will illuminate with the slightest touch. The transistor has amplified the current (through your fingers) about 200 times.

8 MILLION GAIN!

This circuit is so sensitive it will detect "mains hum." Simply move it across any wall and it will detect where the mains cable is located. It has a gain of about $200 \times 200 \times 200=8,000,000$ and will also detect static electricity and the presence of your hand without any direct contact. You will be amazed what it detects! There is static electricity EVERYWHERE! The input of this circuit is classified as very high impedance.

Here is a photo of the circuit, produced by a constructor, where he claimed he detected "ghosts."
http://letsmakerobots.com/node/12034
http://letsmakerobots.com/node/18933

MAINS HUM DETECTOR

This simple circuit will detect if a cable is carrying the "Mains." The piezo diaphragm is will let you hear the hum: Do not touch the copper wire. Only place the detector near the plastic covering. It will work at 2 cm from the cable.

							secondary is connected to the top of the speaker. It does not matter which end of the primary is connected to the collector of the transistor in the circuits in this book.

 and the quiescent current is just 5 mA . The project is ideal for listening to conversations or TV etc in another room with long leads connecting the microphone to the amplifier.

The circuit uses a flashing LED to flash a super-bright 20,000mcd white LED

LED FLASHER WITH ONE TRANSISTOR!
This is a novel flasher circuit using a single driver transistor
 that takes its flash-rate from a flashing LED. The flasher in the photo is 3 mm . An ordinary LED will not work.
The flash rate cannot be altered by the brightness of the high-bright white LED can be adjusted by altering the 1 k resistor across the 100 u electrolytic to 4 k 7 or 10 k .
The 1 k resistor discharges the 100 u so that when the transistor turns on, the charging current into the 100 u illuminates the white LED.
If a 10 k discharge resistor is used, the 100 u is not fully
discharged and the LED does not flash as bright. All the parts in the photo are in the same places as in the circuit diagram to make it easy to see how the parts are connected.

Arc Welder Simulator for Model Railways

This very simple circuit replaces a very complex circuit (one of our previous projects) because all the random flashing is done via a microscopic microcontroller inside the flickering LED.
These LEDs can be purchased on eBay and you can contact Colin Mitchell for the link. The super-bright white LED flashes much more than the flickering LED because the transistor and the 1u electrolytic picks up the pulses (the waveform) across the 470R resistor and only the main changes in the signal are transferred to the white LED. The 10k is very important as it discharges the 1 u to help produce the OFF portion of the waveform.

LED FLASHER

These two circuits will flash a LED very bright and consume less than 2 mA average current. Both circuits can use a transistor with a larger current capability for the second transistor. The first circuit needs a PNP transistor and the second circuit needs an NPN transistor if a number of LEDs need to be driven. The second circuit is the basis for a simple motor speed control.
See the note on how the 330k works, in Flashing Two LEDs below.

FLASHING TWO LEDS

These two circuits will flash two LEDs very bright and consume less than 2 mA average current. They require 6 v supply. The 330 k may need to be 470 k to produce flashing on 6 v as 330k turns on the first transistor too much and the 10u does not turn the first transistor off a small amount when it becomes fully charged and thus cycling is not produced.

LED on 1.5 v

SUPPLY

A red LED requires about 1.7 v before it will start to illuminate - below this voltage NOTHING! This circuit takes about 12 mA to illuminate a red LED using a single cell, but the interesting feature is the way the LED is illuminated.
The 1u electrolytic can be considered to be a 1 v cell. (If you want to be technical: it charges to about $1.5 \mathrm{v}-0.2 \mathrm{v}$ loss due to collectoremitter $=1.3 \mathrm{v}$ and a lost of about 0.2 v via collector-emitter in
diagram B.)
It is firstly charged by the 100R resistor and the 3rd transistor (when it is fully turned ON via the 1 k base resistor). This is shown in diagram "A." During this time the second transistor is not turned on and that's why we have omitted it from the diagram. When the second transistor is turned ON, the 1 v cell is pulled to the 0 v rail and the negative of the cell is actually 1 v below the 0 v rail as shown in diagram "B." The LED sees 1.5 v from the battery and about 1 v from the electrolytic and this is sufficient to illuminate it. Follow the two voltages to see how they add to 2.5 v .

BRIGHT FLASH FROM FLAT BATTERY

This circuit will flash a white LED, on a supply from $2 v$ to 6 v and produce a very bright flash. The circuit takes about 2 mA and old cells can be used. The two 100u electros in parallel produce a better flash when the supply is 6 v .

BIKE FLASHER

This circuit will flash a white LED (or 2,3 4 LEDs in parallel) at 2.7 Hz , suitable for the rear light on a bike.

BIKE FLASHER - Amazing!

This bike flasher uses a single transistor to flash two white LEDs from a single cell. And it has no core for the transformer - just AIR!
All Joule Thief circuits you have seen, use a ferrite rod or toroid (doughnut) core and the turns are wound on the ferrite material. But this circuit proves the collapsing magnetic flux produces an increased voltage, even when the core is AIR. The fact is this: When a magnetic filed collapses quickly, it produces a higher voltage in the opposite direction and in this case the magnetic field surrounding the coil is sufficient to produce the energy we need.
Wind 30 turns on 10 mm ($1 / 2^{\prime \prime}$ dia) pen or screwdriver and then another 30 turns on top. Build the first circuit and connect the wires. You can use 1 or two LEDs. If the circuit does not work, swap the wires going to the base.
Now add the 10 u electrolytic and 100 k resistor (remove the 1 k 5). The circuit will now flash. You must use 2 LEDs for the flashing circuit.

The original 30 turns +30 turns coil is shown on the right. The circuit took 20 mA to illuminate two LEDs.
The secret to getting the maximum energy from the coil (to flash the LEDs) is the maximum amount of air in the centre of the coil. Air cannot transfer a high magnetic flux (density) so we provide a large area (volume) of low flux (density) to provide the energy. The larger $(20 \mathrm{~mm})$ coil reduced the current from 20 mA to 11 mA for the same brightness. This could be improved further but the coil gets too big. The two 30-turn windings must
be kept together because the flux from the main winding must cut the feedback winding to turn ON the transistor HARD.
When the transistor starts to turn on via the 100k, it creates magnetic flux in the main winding that cuts the feedback winding and a positive voltage comes out the end connected to the base and a negative voltage comes out the end connected to the 100k and $10 u$. This turns the transistor ON more and it continues to turn ON until fully turned ON. At this point the magnetic flux is not expanding and the voltage does not appear in the feedback winding.
During this time the 10 u has charged and the voltage on the negative lead has dropped to a lower voltage than before. This effectively turns OFF the transistor and the current in the main winding ceases abruptly. The magnetic flux collapses and produces a voltage in the opposite direction that is higher than the supply and this is why the two LEDs illuminate. This also puts a voltage through the feedback winding that keeps the transistor OFF. When the magnetic flux has collapsed, the voltage on the negative lead of the 10 u is so low that the transistor does not turn on. The 100k discharges the 10 u and the voltage on the base rises to start the next cycle.
You can see the 100k and 1 k 5 resistors and all the other parts in a "birds nest" (in the photo above), to allow easy experimenting.
This is the first circuit you should build to flash a white LED from a single cell.
It covers many features and shows how the efficiency of a LED increases when it is pulsed very briefly with a high current.
The two coils form a TRANSFORMER and show how a collapsing magnetic field produces a high voltage (we use 6 v of this high voltage).
The 10 u and 100 k form a delay circuit to produce the flashing effect.
You can now go to all the other Joule Thief circuits and see how they "missed the boat" by not experimenting fully to simply their circuits. That's why a "birds nest" arrangement is essential to encourage experimenting.
Note: Changing the turns to 40 t for the main winding and $20 t$ for the feedback (keeping the turns tightly wound together by winding wire around them) reduced the current to 89 mA .

The circuit can be made small by using a ferrite slug 2.6 mm diam $\times 7.6 \mathrm{~mm}$ long.
The inductance of this transformer is quite critical and the voltage across the LEDs must be over 6 v for the circuit to work. It will not work with one or two LEDs. It needs THREE LEDs !!!
If the author not not keep experimenting, he would have missed this amazing feature !!

	to 3.6 v . The circuit takes about 2 mA and is actually a voltage-doubler (voltage incrementer) arrangement. The 1 k charges the 100 u and the diode drops 0.6 v to prevent the LED from starting to illuminate on 3 v . When a transistor conducts, the collector pulls the 100 u down towards the $0 v$ rail and the negative of the electro is actually about $2 v$ below the 0 v rail. The LED sees $3 \mathrm{v}+$ 2 v and illuminates very brightly when the voltage reaches about 3.4 v . All the energy in the electro is pumped into the LED to produce a very bright flash.
DUAL 1.5 v WHITE LED FLASHER	DUAL 1v5 WHITE LED FLASHER This circuit alternately flashes two white LEDs, on a 1.5 v supply and produces a very bright flash. The circuit produces a voltage of about 25 v when the LEDs are not connected, but the LEDs reduce this as they have a characteristic voltage-drop across them when they are illuminated. Do not use a supply voltage higher than 1.5 v . The circuit takes about 10 mA . The transformer consists of 30 turns of very fine wire on a 1.6 mm slug 6 mm long, but any ferrite bead or slug can be used. The number of turns is not critical. The 1 n is important and using any other value or connecting it to the positive line will increase the supply current. Using LEDs other than white will alter the flash-rate considerably and both LEDs must be the same colour.

LED FLASHES 3 TIMES WHEN POWER IS APPLIED

This circuits uses a FLASHING LED - not an ordinary LED. When the circuit turns ON, the electrolytic is uncharged and the charging-current turns on the transistor. This makes the LED flash. The value of the 47 u and 100 k will depend on how many times you want the LED to flash.
The 1 N4148 diode discharges the electrolytic when the power is turned off so the circuit will start immediately the power is applied. This diode is not needed if the circuit is turned off for a long time.

LED FLASHES FOR 5 SECONDS AFTER BUTTON IS RELEASED

This circuits uses a FLASHING LED - not an ordinary LED.
When the switch is pressed, the LEDs flash for about 5 seconds when the switch is released. and turn off. The circuit takes NO CURRENT after the LEDs have turned OFF.
You can experiment with the value of the electrolytics, the 4 k 7 and 10 k to get the result you want. Use red or green LEDs. Only 2 white LEDs can used in each string for 9 v supply

WHITE LINE FOLLOWER

This circuit can be used for a toy car to follow a white line. The motor is either a $3 v$ type with gearing to steer the car or a rotary actuator or a servo motor. When equal light is detected by the photo resistors the voltage on the base of the first transistor will be mid rail and the circuit is adjusted via the 2k2 pot so the motor does not receive any voltage. When one of the LDR's receives more (or less) light, the motor is activated. And the same thing happens when the other LDR receives less or more light.

LED DETECTS LIGHT

All LEDs give off light of a particular colour but some LEDs are also able to detect light. Obviously they are not as good as a device that has been specially made to detect light; such as solar cell, photocell, photo resistor, light dependent resistor, photo transistor, photo diode and other photo sensitive devices.
A green LED will detect light and a high-bright red LED will respond about 100 times better than a green LED, but the LED in this position in the circuit is classified as very high impedance and it requires a considerable amount of amplification to turn the detection into a worthwhile current-source. All other LEDs respond very poorly and are not worth trying.
The accompanying circuit amplifies the output of the LED and enables it to be used for a number of applications.
The LED only responds when the light enters the end of the LED and this makes it ideal for solar trackers and any time there is a large difference between the dark and light conditions. It will not detect the light in a room unless the lamp is very close.

MAKE TIME FLY!

Connect this circuit to an old electronic clock mechanism and speed up the motor 100 times!
The "motor" is a simple "stepper-motor" that performs a half-rotation each time the electromagnet is energised. It normally takes 2 seconds for one revolution. But our circuit is connected directly to the winding and the frequency can be adjusted via the pot.
Take the mechanism apart, remove the 32 kHz crystal and cut one track to the electromagnet. Connect the circuit below via wires and re-assemble the clock.
As you adjust the pot, the "seconds hand" will move clockwise or anticlockwise and you can watch the hours "fly by" or make "time go backwards."
The multivibrator section needs strong buffering to drive the 2,800 ohm inductive winding of the motor and that's why push-pull outputs have been used. The flip-flop circuit cannot drive the highly inductive load directly (it upsets the waveform enormously).
From a 6 v supply, the motor only gets about 4 v due to the voltage drops across the transistors. Consumption is about 5 mA .

HOW THE MOTOR WORKS

The rotor is a magnet with the north pole shown with the red mark and the south pole opposite.
The electromagnet actually produces poles. A strong North near the end of the electromagnet, and a weak North at the bottom. A strong South at the top left and weak South at bottom left. The rotor rests with its poles being attracted to the 4 pole-pieces equally.

Voltage must be applied to the electromagnet around the correct way so that repulsion occurs. Since the rotor is sitting equally between the North poles, for example, it will see a strong pushing force from the pole near the electromagnet and this is how the motor direction is determined. A reversal of voltage will revolve the rotor in the same direction as before. The design of the motor is much

[^0]

CONSTANT CURRENT SOURCE

This circuit provides a constant current to the LED. The LED can be replaced by any other component and the current through it will depend on the value of R2. Suppose R2 is 560 R . When 1 mA flows through R2, 0.56 v will develop across this resistor and begin to turn on the BC547. This will rob the base of BD 679 with turn-on voltage and the transistor turns off slightly. If the supply voltage increases, this will try to increase the current through the circuit. If the current tries to increase, the voltage across R2 increases and the BD 679 turns off more and the additional voltage appears across the BD 679. If $R 2$ is $56 R$, the current through the circuit will be 10 mA . If $R 2$ is $5 R 6$, the current through the circuit will be 100 mA although you cannot pass 100 mA through a LED without damaging it.

CONSTANT CURRENT SOURCE

 circuits 2 \& 3By rearranging the components in the circuit above, it can be designed to turn ON or OFF via an input.
The current through the LED (or LEDs) is determined by the value of R.
$5 \mathrm{~mA} R=120 \mathrm{R}$ or 150 R
$10 \mathrm{~mA} R=68 \mathrm{R}$
$15 \mathrm{~mA} R=47 \mathrm{R}$
$20 \mathrm{~mA} R=33 \mathrm{R}$
$25 \mathrm{~mA} R=22 \mathrm{R}$ or 33 R
$30 \mathrm{~mA} R=22 \mathrm{R}$

ON - OFF VIA MOMENTARY PUSHBUTTONS

- see Also Push-ON Push-OFF (in 101-200 Circuits)
This circuit will supply current to the load $R_{\llcorner }$. The maximum current will depend on the second transistor. The circuit is turned on via the "ON" push button and this action puts a current through the load and thus a voltage develops across the load. This voltage is passed to the PNP transistor and it turns ON. The collector of the PNP keeps the power transistor ON.
To turn the circuit OFF, the "OFF" button is pressed momentarily. The 1 k between base and emitter of the power transistor prevents the base floating or receiving any slight current from the PNP transistor that would keep the circuit latched ON.
The circuit was originally designed by a Professor of Engineering at Penn State University. It had 4 mistakes. So much for testing a circuit!!!! It has been corrected in the circuit on the left.

TICKING BOMB

This circuit produces a sound similar to a loud clicking clock. The frequency of the tick is adjusted by the 220 k pot.
The circuit starts by charging the 2 u 2 and when 0.65 v is on the base of the NPN transistor, it starts to turn on. This turns on the BC 557 and the voltage on the collector rises. This pushes the small charge on the $2 u 2$ into the base of the BC547 to turn it on more.
This continues when the negative end of the 2 u 2 is above 0.65 v and now the electro starts to charge in the opposite direction until both transistors are fully turned on. The BC 547 receives less current into the base and it starts to turn off. Both transistors turn off very quickly and the cycle starts again.

LIE DETECTOR-1

This circuit detects the resistance between your fingers to produce an oscillation. The detectionpoints will detect resistances as high as 300k and as the resistance decreases, the frequency increases.
Separate the two touch pads and attach them to the back of each hand. As the subject feels nervous, he will sweat and change the frequency of the circuit.
The photos show the circuit built on PC boards with separate touch pads.

LIE DETECTOR-2
This circuit detects the resistance between your fingers to turn on the FALSE LED. The circuit sits with the TRUE LED illuminated. The 47 k pot is adjusted to allow the LEDs to change state when touching the probes.

TOUCH SWITCH - globe
This circuit detects the skin resistance of a finger to deliver a very small current to the superalpha pair of transistors to turn the circuit ON. The output of the "super transistor" turns on the BC 557 transistor. The voltage on the top of the globe is passed to the front of the circuit via the 4 M 7 to take the place of your finger and the circuit remains ON .
To turn the circuit OFF, a finger on the OFF pads will activate the first transistor and this will rob the "super transistor" of voltage and the circuit will turn OFF.
This project is available as a kit of parts from Talking Electronics for $\$ 6.00$ plus $\$ 4.00$

TOUCH SWITCH - LED

This circuit turns a LED on and off.

TOUCH SWITCH - LED - modification by Mike Grozak

To make the circuit come ON with the LED not illuminated, you need to put a "set" on the circuit.
A "set" is a particular condition that may be ON or OFF but the fact is the circuit ALWAYS starts in a particular way.

The 10 n prevents a voltage appearing on the base of the BC557 transistor when the circuit is turned ON and this means the transistor is OFF. The feedback line will not have any voltage on it and thus the second and third transistor will not be turned ON. Thus the circuit will come ON with the LED not illuminated.

TOUCH SWITCH-3

This circuit stays ON.

CODE PAD

Here is a simple CODE PAD to add to your alarm. It consists of 10 buttons and they must be pressed in a certain order for the output to change. You can see from the circuit how the buttons are pressed and two buttons must be pressed at the same time, the two other buttons at the same time, to gain entry. The operation of this type of pad is very unusual as anyone pressing the buttons by incrementing numbers will not be able to produce the code.

SIGNAL INJECTOR

This circuit is rich in harmonics and is ideal for testing amplifier circuits. To find a fault in an amplifier, connect the earth clip to the $0 v$ rail and move through each stage, starting at the speaker. An increase in volume should be heard at each preceding stage. This Injector will also go through the IF stages of radios and FM sound sections in TV's.

SOUND TRIGGERED LED

This circuit turns on a LED when the microphone detects a loud sound. The "charge-pump" section consists of the $100 \mathrm{n}, 10 \mathrm{k}$, signal diode and 10 u electrolytic. A signal on the collector of the first transistor is passed to the 10 u via the diode and this turns on the second transistor, to illuminate the LED.

\square	1v and an extra 1.5 v is needed from the supply to illuminate the orange LED.

LOGIC PROBE with PULSE

This circuit has the advantage of providing a PULSE LED to show when a logic level is HIGH and pulsing at the same time. It can be built for less than $\$ 5.00$ on a piece of matrix board or on a small strip of copper clad board if you are using surface mount components. The probe will detect a HIGH at 3v and thus the project can be used for $3 \mathrm{v}, 5 \mathrm{v}$ and CMOS circuits.

FOG HORN

When the push-button is pressed, the 100 u will take time to charge and this will provide the rising pitch and volume. When the pushbutton is released, the level and pitch will die away. This is the characteristic sound of a ship's fog horn.

HEADS OR TAILS

When the push-button is pressed, the circuit will oscillate at a high rate and both LEDs will illuminate. When the push button is released, one of the LEDs will remain illuminated. The 50k is designed to equalise the slightly different values on each half of the circuit and prevent a "bias."

SCR WITH TRANSISTORS
The SCR in circuit A produces a 'LATCH.' When the button is pressed, the LED remains illuminated.
The SCR can be replaced with two transistors as shown in circuit B.
To turn off circuit A, the current through the SCR is reduced to zero by the action of the OFF button. In circuit B the OFF button removes the voltage on the base of
the BC547. The OFF button could be placed across the two transistors and the circuit will turn off.

HEE HAW SIREN

The circuit consists of two multivibrators. The first multi-vibrator operates at a low frequency and this provides the speed of the change from Hee to Haw. It modifies the voltage to the tone multivibrator, by firstly allowing full voltage to appear at the bottom of the 220R and then a slightly lower voltage when the LED is illuminated.

HARTLEY OSCILLATOR

The Hartley Oscillator is characterised by an LC circuit in its collector. The base of the transistor is held steady and a small amount of signal is taken from a tapping on the inductor and fed to the emitter to keep the transistor in oscillation.
The transformer can be any speaker transformer with centre-tapped primary.
The frequency is adjusted by changing the 470p.

DOOR-KNOB ALARM

This circuit can be used to detect when someone touches the handle of a door. A loop of bare wire is connected to the point "touch plate" and the project is hung on the door-knob. Anyone touching the metal doorknob will kill the pulses going to the second transistor and it will turn off. This will activate the "high-gain" amplifier/oscillator.
The circuit will also work as a "Touch Plate" as it does not rely on mains hum, as many other circuits do.

SIMPLE MOTOR SPEED CONTROL

This circuit is better than reducing the RPM of a motor via a resistor. Firstly it is more efficient. And
secondly it gives the motor a set of pulses and this allows it to start at low RPM. It's a simple Pulse-Width circuit or Pulse-Circuit.

MOTOR SPEED

 CONTROLLERMost simple motor speed controllers simply reduce the voltage to a motor by introducing a series resistance. This reduces the motor's torque and if the motor is stopped, it will not start again.
This circuit detects the pulses of noise produced by the motor to turn the circuit off slightly. If the motor becomes loaded, the amplitude of the pulses decreases and the circuit turns on more to deliver a higher current.

MOTOR SPEED CONTROL - Circuit 3

http://members.shaw.ca/novotill
*Unmarked diodes are silicon so use 1 N4148. Top transistor is germanium running at Vbe of $200 \mathrm{~m} V$ but silicon works perfectly fine as well. Resistors are $1 / 4 \mathrm{~W}$ CF 5% except as noted. It's ok to use 4.7Ω resistor in place of choke. Motor power draw under different loadings is:

- 32 mA @ 2.4 V under zero load freerunning.
- 80 mA @ 2.8 V under normal regulated load.
- 200 mA @ 4 V under normal masimum load.
-300 mA @ 4.5 V is end of speed regulation.
$-460 \mathrm{~mA} @ 3.9 \mathrm{~V}$ shaft frozen motor stalled.

20 WATT FLUORO INVERTER

This circuit will drive a 40 watt fluoro or two 20 -watt tubes in series. The transformer is wound on a ferrite rod 10 mm dia and 8 cm long. The wire diameters are not critical but our prototype used 0.61 mm wire for the primary and 0.28 mm wire for the secondary and feedback winding.
Do not remove the tube when the circuit is operating as the spikes produced by the transformer will damage the transistor.
The circuit will take approx 1.5 amp on 12 v , making it more efficient than running the tubes from the mains. A

	normal fluoro takes 20 watts for the tube and about 15 watts for the ballast. A Kit for this project is available from Talking Electronics called Fluorescent Lamp Inverter for $\$ 12.50$ plus postage. Click Here
	6 to 12 WATT FLUORO INVERTER This circuit will drive a 40 watt fluoro or two 20-watt tubes in series but with less brightness than the circuit above and it will take less current. 2×20 watt tubes $=900 \mathrm{~mA}$ to 1.2 A and 1×20 watt tube 450 mA to 900 mA depending on pot setting. The transformer is wound on a ferrite rod 10 mm dia and 8 cm long. The wire diameter is fairly critical and our prototype used 0.28 mm wire for all the windings. Do not remove the tube when the circuit is operating as the spikes produced by the transformer will damage the transistor. The pot will adjust the brightness and vary the current consumption. Adjust the pot and select the base-bias resistor to get the same current as our prototype. Heat-sink must be greater than 40sq cm. Use heat-sink compound.

GOLD DETECTOR

see also:

BFO METAL DETECTOR in " 100 IC circuits" SIMPLE BFO METAL LOCATOR in " 100 IC circuits" METAL DETECTORS - article

This very simple circuit will detect gold or metal or coins at a distance of approx 20 cm - depending on the size of the object.
The circuit oscillates at approx 140 kHz and a harmonic of this frequency is detected by an AM

The Layout of Metal Detector -1
radio.
Simply tune the radio until a squeal is detected.
When the search coil is placed near a metal object, the frequency of the circuit will change and this will be heard from the speaker.
The layout of the circuit is shown and the placement of the radio.

The TRUTH about Metal (GOLD) Detectors.

A Gold Detector's club in the US created a challenge with 12 members with skills ranging from 12 months detection to over 25 years. They used 5 different detectors to find 30 different items, hidden in sand and under pieces of cardboard.
The results were these: All detectors performed almost equally but the interpretation of the beeps, sounds and readings on the detector were quite often mis-read and the winner was a member with 1 year experience.
The moral of the story is to dig for anything that is detected as it may not be a "ring-pull."

With these findings you can clearly use a very simple, cheap, detector and get results equal to the most expensive equipment.
The only thing you have to remember is this: You need the right frequency for the type of soil to cancel out the effects of minerals etc.
That's why there is a range of frequencies from 6 kHz to 150 Hz . All the other modes of producing and injecting the pulse add only a very small improvement to the detection process.
The energy put into the injecting pulse also has an influence of the depth of detection.

METAL DETECTOR MkII - see the full project: Metal Detector Mkll Metal Detector kit Mkll $\$ 15.00$ plus postage

This is a self-contained metal detector with about the same performance as Metal Detector-1 above.
All Metal detectors having the principle of detecting a metal object with a coil of about 12cm dia and operating at 100 kHz , will have the same performance, no matter how complex the circuit.
They all rely on detecting the change in frequency as small as 1 Hz or a voltage-change across a coil as small as 1 uV .
The secret is to produce the largest waveform while loading the coil as lightly as possible. This allows the coil to detect metal at the furthest distance. See more details on Metal Detector MkII

METAL DETECTOR MkII

Nail Finder - see the full project: Metal Detector MkII

Kits for Metal Detector kit - Nail Finder $\$ 17.00$ plus postage
This project is an extension of Metal Detector Mkll, with a small detecting head to find tiny components such as nails and lost components.
This is an essential tool for servicemen and anyone trying to find a metal object hidden or buried in timber, soil or mud.

METAL DETECTOR - NAIL FINDER
6-10-2014

The Nail Finder head

The Nail Finder project is HERE

PHASER GUN

This is a very effective circuit. The sound is amazing. You have to build it to appreciate the range of effects it produces. The 50k pot provides the frequency of the sound while the switch provides fast or slow speed.
Hear the sounds: (built by a reader)
http://www.youtube.com/watch?
$\mathrm{v}=\mathrm{JN}$ fBZxRpoU\&feature=BFa\&list=UU2oJeVi1pM3nQy_8X6fFHAA

IC RADIO

This circuit contains an IC but it looks like a 3-leaded transistor and that's why we have included it here.
The IC is called a "Radio in a Chip" and it contains 10 transistors to produce a TRF (tuned Radio Frequency) front end for our project.
The 3-transistor amplifier is taken from our SUPER EAR project with the electret microphone removed.
The two 1 N 4148 diodes produce a constant voltage of 1.3 v for the chip as it is designed for a maximum of 1.5 v .
The "antenna coil" is 60 t of 0.25 mm wire wound on a 10 mm ferrite rod. The tuning capacitor can be any value up to 450 p.
Note: The YS414 IC is identical to ZN414. See above.

5-TRANSISTOR RADIO
If you are not able to get the ZN414 IC, this circuit uses two transistors to take the place of the chip.

AUTOMATIC LIGHT

This circuit automatically turns on a light when illumination is removed from the LDR. It remains ON for the delay period set by the 2 M 2 pot.
The important feature of this circuit is the building blocks it contains - a delay circuit and Schmitt Trigger. These can be used when designing other circuits.

NIGHT LIGHT

This circuit activates a relay when illumination falls below a preset level on the Light Dependent Resistor (Photo Cell).

This circuit will drive 30 cm strips to 5 m strips. Two 5 m strips have been tested with this circuit.

PIR LED LIGHT

PIR detectors make a wonderful detector to turn on LEDs to illuminate a passage, doorway or path.
It has an LDR that only allows the circuit to turn ON at night.

PIR LED LIGHT
This circuit can use old cells as it requires less than 20 mA to illuminate the 4 LEDs and less than 0.4 mA when sitting around. There are a number of different PIR detectors and most of them take 1 minute to settle before detecting IR and turn ON for a short period of time. The 100 u increases the turn-ON time to about 4 seconds and some detectors keep outputting a signal while you are in front of the lens.
The first transistor increases the current from the PIR module so the 100u can be charged via the 1 k and the second transistor acts as a buffer to deliver current to turn on the LEDs.
The 100 R and red 100 u prevent the PIR re-triggering.
This is a great project for "using up" old batteries.
A kit for this project is available from Talking Electronics for $\$ 6.00$ plus $\$ 4.50$ postage.
It is built on a small piece of Matrix Board and includes $4 \times$ superbright LEDs. Email Colin Mitchell for details.

PIR LED LIGHT using LED STRIP

This circuit uses a home-made transformer, wound on a nut and bolt, and a $12 v$ LED Strip or LED Panel.

All these LED panels have inbuilt resistors so they can be connected to 12 v supplies. We do not need the inbuilt resistors in this circuit however the resistors cannot be removed.

The LED strip shown in the circuit above contains 9 LEDs in groups of 3 with an inbuilt current liming resistor. The current-limiting resistor is not needed in this design but cannot be removed. You can make your own LED strip by connecting three white LEDs in series (NO current-limiting resistor is needed). You can have a total of 9 LEDs. (3 strings of 3 LEDs) or you can use any of the 12 v LED panels available on eBay.
If the circuit does not work, connect the feedback wires around the other way.
The LDR is included to turn the circuit ON only at night and the emitter-follower transistor increases the ON-time to about 4 seconds.

You can use old cells and make sure the supply is not higher than 9 v as the LED Strip will remain illuminated because you will be supplying enough voltage to illuminate it !! You will need to experiment with the 2 k 2 resistor and 2 n 2 to get the best illumination with the transformer you use and the supply voltage.

3-LED CHASER by Faraday s.sh_butterfly@yahoo.com

The LEDs in this circuit produce a chasing pattern similar the running LEDs display in video
shops.
In fact the effect is called: "Running Hole." All transistors will try to come on at the same time when the power is applied, but some will be faster due to their internal characteristics and some will get a different turn-on current due to the exact value of the 22 u electrolytics. The last 22 u will delay the voltage-rise to the base of the first transistor and make the circuit start reliably. It is very difficult to see where the hole starts and that's why you should build the circuit and investigate it yourself. The circuit can be extended to any number of odd stages as shown in the next circuit, using 5 transistors.

Video by Faraday: 3-LED Chaser mp4 128KB

5-LED CHASER

This is an extension of the 3-LED Chaser above.

The following circuit produces a slightly different effect because the LEDs are in the emitter. You cannot mix the LED colours.

3-LED CHASER using FETs

This circuit uses FETs. This circuit has been tested with the following two FETs on 6 v to 12 v with red and white LEDs. The 1 M resistor must be reduced to 47 k for the 2N7000. Note the different pin-outs for the two FETs.

his power supply can be built in less than an hour on a piece of copper-laminate. The board acts as a heat-sink and the other components can be mounted as shown in the photo, by cutting strips to suit their placement.
The components are connected with enamelled wire and the transistor is bolted to the board to keep it cool.
The Bench Power Supply was designed to use old "C," "D" and lantern batteries, that's why there are no diodes or electrolytics. Collect all your old batteries and cells and connect them together to get at least $12 \mathrm{v}-14 \mathrm{v}$.
The output of this power supply is regulated by a 10 v zener made up of the characteristic zener voltage of 8.2 v between the base-emitter leads of a BC547 transistor (in reverse bias) and approx 1.7 v across a red LED. The circuit will deliver $0 \mathrm{v}-9 \mathrm{v}$ at 500 mA (depending on the life left in the cells your are using). The 10 k pot adjusts the output voltage and the LED indicates the circuit is ON. It's a very good circuit to get the last of the energy from old cells.

ADDING A VOLT-METER TO THE BENCH POWER SUPPLY

A voltmeter can be added to the Bench Power Supply by using a very low cost multimeter. For less than $\$ 10.00$ you can get a mini multimeter with 14 ranges, including a 10 v range. The multimeter can also be used to monitor current by removing the negative lead and making a new RED lead, fitting it to the "-" of the multimeter and selecting the 500 mA range as shown in the photo below:

MAKING 0-1Amp meter for the BENCH POWER SUPPLY

The item in the photo is called a "Movement." A movement is a moving coil with a pointer and no resistors connected to the leads.
Any Movement can be converted to an ammeter without any mathematics. Simply solder two 1R resistors (in parallel) across the terminals of any movement and connect it in series with an ammeter on the output of the Bench Power Supply. The second ammeter provides a reference so you can calibrate the movement. Connect a globe and increase the voltage.
At 500 mA , if the pointer is "up scale" (reading too high) add a trim-resistor. In our case it was $4 R 7$.
The three shunt resistors can be clearly seen in the photo. Two 1R and the trim resistor is $4 R 7$.
You can get a movement from an old multimeter or they are available in electronics shops as a separate item. The sensitivity does not matter. It can be $20 u A$ or $50 u A$ FSD or any sensitivity.

MAKING A ZENER DIODE and POWER ZENER

Sometimes a zener diode of the required voltage is not available. Here are a number of components that produce a characteristic voltage across them. Since they all have different voltages, they can be placed in series to produce the voltage you need. A reference voltage as low as 0.65 v is available and you need at least 1 to 3 mA through the device(s) to put them in a state of conduction (breakdown).

12v TRICKLE CHARGER

The 12v Trickle Charger circuit uses a TIP3055 power transistor to limit the current to the battery by turning off when the battery voltage reaches approx 14 v or if the current rises above 2 amp . The signal to turn off this transistor comes from two other transistors - the BC557 and BC 547.

Firstly, the circuit turns on fully via the BD139 and TIP3055. The BC557 and BC 547 do not come into operation at the moment. The current through the 0.47 R creates a voltage across it to charge the 22 u and this puts a voltage between the base and emitter of the BC547. The transistors turn on slightly and remove some of the turn-on voltage to the BD139 and this turns off the TIP3055 slightly.
This is how the 2 amp max is created.
As the battery voltage rises, the voltage divider made up of the 1 k 8 and 39 k creates a 0.65 v between base and emitter of the BC557 and it starts to turn on at approx 14 v .

This turns on the BC 547 and it robs the BD136 of "turn-on" voltage and the TIP3055 is nearly fully turned off.
All battery chargers in Australia must be earthed. The negative of the output is taken to the earth pin.

1.5v to 10v INVERTER

This very clever circuit will convert 1.5 v to 10 v to take the place of those expensive 9 v batteries and also provide a 5 v supply for a microcontroller project.
But the clever part is the voltage regulating section. It reduces the current to less than 8 mA when no current is being drawn from the output. With a 470R load and 10 v , the output current is 20 mA and the voltage drop is less than 10 mV . The pot will adjust the output voltage from 5.3 v to 10 v .

HOW THE CIRCUIT WORKS

The circuit starts by the 100k turning on the BC547 and the BC557 gets turned ON via the 33k resistor.
This turns ON the BC337 via the 100R resistor. You will notice the "current-limiting" resistors are getting small and smaller. This is because the transistor-current is getting larger and larger and we want the resistor to pass this higher current.
Current flowing through the collector-base of the BC337 causes current to flow through the inductor. This current creates expanding flux that cuts all the turns of the inductor and produces a voltage in the OPPOSITE DIRECTION. This voltage OPPOSES the incoming voltage and very little current flows.
Over a period of microseconds, this voltage drops a microscopic amount and thus a slightly higher current will flow.
The voltage on the collector drops and this change is passed through the 330p to turn on the BC557 MORE.
This continues until the BC337 is fully turned ON (by the action of the 330p).
The 330p now charges a little more and this reduces the base current in the BC557 and it starts to turn OFF.
This action starts to turn OFF the BC337 and very soon we have both transistors fully turned OFF.
The BC337 is effectively removed from the circuit and the current flowing through the inductor stops increasing. The magnetic flux stops increasing and the voltage it produces stops IMMEDIATELY.
The magnetic flux now does not have any voltage opposing it and it starts to collapse and cut all the turns of the inductor. It does this very quickly because there is no voltage opposing its collapse.
The result is a very high voltage in the opposite direction to the applied voltage. What this means is the lower terminal of the inductor produces a voltage that is ADDED to the supply voltage.
This voltage can be as high at 100 v or more, and is passed through the diode.
Even though this voltage is very high, it actually consists of a very high voltage with a very small current.
The combination of these two is called ENERGY and it flows into the 100 u to charge it. As the voltage on the 100 u increases, its voltage is detected by the 4th transistor and
when it reaches 10 v , the 3rd transistor is turned OFF slightly so the first two transistors are not driven as hard.
This is how a stable 10 v is produced.

5v REGULATED SUPPLY FROM 3V

(3) | This circuit will produce a |
| :--- |
| 5 v regulated output from 2 |
| cells (3v). The output |

3.3v FROM 5V SUPPLY

B

Here are 3 ways to generate a 3.3 v supply:

Circuit "A" uses two 1.5 v cells. This is the cheapest and best way to create a 3 v supply.

Circuit "B" uses 3×1 N448 signal diodes to drop 1.8 v and produce 3.2 v on the output. The 5 v supply must be regulated.

Circuit "C" produces 3.3v from a 3 v 3 zener. The 47R limits the output to about 30 mA . The 5 v can have a small ripple as the zener will create a stable 3 v 3 output.

27MHz Field Strength Meter

This circuit will test 27 MHz transmitters and show the transmitter is operating when the antenna is connected to point 1 and the actual frequency of transmission when the antenna is connected to point 2. See the full project HERE.

27MHz RECEIVER

The 27 MHz receiver is really a transmitter. It's a very weak transmitter and delivers a low level signal to the surroundings via the antenna. When another signal (from the transmitter) comes in contact with the transmission from the receiver it creates an interference pattern that reflects down the antenna and into the first stage of the receiver.
The receiver is a super-regenerative design. It is self-oscillating (or already oscillating) and makes it very sensitive to nearby signals. See full description in $\underline{27 M H z}$ Links article.

27MHz TRANSMITTER WITH SQUARE-WAVE OSCILLATOR
The circuit consists of two blocks. Block 1is a multivibrator and this has an equal mark/space ratio to turn the RF stage on and off. Block 2 is an RF oscillator. The feedback to keep the stage operating is provided by the 27 p capacitor. The frequency-producing items are the coil (made up of the full 7 turns) and the 47 p air trimmer. These two items are called a parallel tuned circuit. They are also called a TANK CIRCUIT as they store energy just like a TANK of water and pass it to the antenna. The frequency of the circuit is adjusted by the 47p air trimmer. See full description in 27 MHz Links article.

27MHz RECEIVER-2

This circuit matches with the 27 MHz Transmitter with Square-wave Oscillator. See full description on Talking Electronics website: 27 MHz Links article.
The receiver frequency is fixed. The transmitter is adjusted to suit the receiver. The 3-27p trimmer is adjusted for maximum gain (10p trimmer and $5 p 6$ in our case) and this is a critical adjustment. The base-emitter junction of the first BC547 sets 0.7 v (as it is heavily turned on by the 10k) on the base of the oscillator Q1, and this is fixed. Q1 is very lightly turned on (due to the emitter resistor), and this makes it very sensitive when it is oscillating. Any 27 MHz signal from the surroundings will upset the oscillator and any tone in the signal will be passed to the stages for amplification. The coil is 13 turns. It can be replaced with 11 turns of 0.25 mm wire on 3 mm dia slug 7 mm long. Although the original Russian product worked very well, our prototype did not have very good sensitivity. The circuit was very difficult to set-up.
Note: When making the 27 uH inductor and checking its value on an inductance meter; if the meter does not read low values accurately, put two inductors in series. Measure the first inductor, say 100 uH . The two inductors in series will be 127 uH as inductors combine just like resistors in series! The result is the addition of the individual values.

WALKIE TALKIE

Nearly all the components in the 4-transistor circuit are used for both transmitting and receiving. This makes it a very economical design. The frequency-generating stage only needs the crystal to be removed and it becomes a receiver. Next is a three transistor directly coupled audio amplifier with very high gain. The first transistor is a pre-amplifier and the next two are wired as a super-alpha pair, commonly called a Darlington pair to drive the speaker transformer. See full description in 27 MHz Links article.

Type:		Gain:	Vbe	Vce	Current	Case
2SC1815	NPN	100	1v	50v	150mA	
2SC3279	NPN	$\begin{gathered} 140 \text { to } \\ 600 \\ @ 0.5 \mathrm{~A} \end{gathered}$	0.75v	10v	2amp	

$\begin{aligned} & \text { BC337 } \\ & \text { BC338 } \end{aligned}$	NPN	$\begin{gathered} 60 \\ @ 300 \mathrm{~mA} \end{gathered}$	0.7v	$\begin{aligned} & 45 v \\ & 25 v \end{aligned}$	800mA	
BC547 BC548 BC549	NPN	$\left\lvert\, \begin{gathered} 70 \\ @ 100 \mathrm{~mA} \end{gathered}\right.$	0.7v	$\begin{gathered} \hline 45 \mathrm{v} \\ 30 \mathrm{v} \\ 30 \mathrm{v} \\ \hline \end{gathered}$	100 mA	
BC557	PNP			45v	100mA	
BD139	NPN	$\begin{array}{r} 70-100 \\ @ 150 \mathrm{~mA} \end{array}$	0.5v	80v	1.5A	\cdots
BD140	PNP	$\left\lvert\, \begin{gathered} 70-100 \\ @ 150 \mathrm{~mA} \end{gathered}\right.$	0.5v	80v	1.5A	ECB
2SCxxx						
8050	NPN			10 v	1.5 A	
8550	PNP			10v	1.5A	
9012	PNP				500 mA	
9013	NPN		1 v	20v	500 mA	
9014	NPN				100 mA	
9015	PNP				100 mA	
9018	NPN	700 MHz		15v	50 mA	

5 TRANSISTOR WALKIE TALKIE - 1

This walkie talkie circuit does not have a crystal or speaker transformer, with the board measuring just $3 \mathrm{~cm} \times 4 \mathrm{~cm}$ and using 1/10th watt resistors, it is one of the smallest units on the market, for just $\$ 9.50$ to $\$ 12.00$. The wires in the photo go to the battery, speaker, call-switch and antenna. The most difficult component in the circuit to duplicate is the oscillator coil. See the photo for the size and shape. The coil dia is 5 mm and uses 0.25 mm wire. The actual full-turn or half turn on the coil is also important. Almost all 5 transistor walkie talkies use this circuit or slight variations. See the article: 27 MHz Transmitters for theory on how these transmitters work - it is fascinating.

Here is another walkie talkie circuit, using slightly different values for some of the components. See the article: $\underline{27 \mathrm{MHz} \text { Transmitters for theory on how these transmitters work. }}$

WALKIE TALKIE with LM386
Here is a more up-to-date version of the walkie talkie, using an LM 386 amplifier IC to take the place of 4 transistors.

SPY AMPLIFIER
This simple circuit will detect very faint sounds and deliver them to a 32 ohm earpiece. The circuit is designed for 1.5 v operation and is available from $\$ 2.00$ shops for less than $\$ 5.00$ The photo shows the surface-mount components used in its construction.

SOLAR ENGINE

This circuit is called Type-1 SE. Low current from a solar cell is stored in a large capacitor and when a preset voltage-level is reached, the energy from the capacitor is released to a motor.
For full details on how the circuit works and how to modify it, see:
http://www.talkingelectronics.com/projects/Robots/Page2.html

An improved design over Solar Engine circuit above. It has a clever 2transistor self-latching arrangement to keep the circuit ON until the voltage drops to 1.5 v . The circuit turns on at 2.8 v . This gives the motor more energy from the electrolytic at each "pulse." For full details on how the circuit works and how to modify it, see: http://www.talkingelectronics.com/projects/Robots/Page2.html

SUN EATER-1A

This circuit is an improvement on the Sun Eater I shown above. It works exactly the same except the slight re-arrangement of the components allows an NPN power transistor to be used. One less resistor is needed and one less capacitor but two extra diodes have been added to increase the upper turn-on voltage.
For full details on how the circuit works and how to modify it, see:
http://www.talkingelectronics.com/projects/Robots/Page2.html

SOLAR ENGINE Type-3

Type-3 circuits are current controlled or current-
triggered. This is another very clever way of detecting when the electrolytic has reached its maximum charge.
At the beginning of the charge-cycle for an electrolytic, the charging current is a maximum. As the electrolytic becomes charged, the current drops. In the type-3 circuit, the charging current passes through a 100R resistor and creates a voltage drop. This voltage is detected by a transistor (Q2) and the transistor is turned ON.
This action robs transistor (Q1) from turn-on voltage and the rest of the circuit is not activated. As the charging current drops, Q2 is gradually turned off and Q1 becomes turned on via the 220k resistor on the base.
This turns on Q3 and the motor is activated. The voltage across the storage electrolytic drops and the current through the 100R rises and turns the circuit off. The electrolytic begins to charge again and the cycle repeats. For full details on how the circuit works and how to modify it, see:
http://www.talkingelectronics.com/projects/Robots/Page2.html

SOLAR PHOTOVORE

The green LEDs cause the Solar Engine on the opposite side to fire and the Solar Photovore turns toward the light source. The motors are two pager "vibe" motors with the weights removed. The 100k pot on the "head" balances the two Solar Engines. If you cannot get the circuit to work with green LEDs, use photo-transistors. For full details on how the circuit works and how to modify it, see: http://www.talkingelectronics.com/projects/Robots/Page4.html

FRED Photopopper (Flashing LED)

It is a Photopopper using low-cost components. It uses two red or green flashing LEDs to turn the circuit on when the voltage across the electrolytic has reached about 2.7 v . The flashing LEDs change characteristics according to the level of the surrounding light and this turns the circuit into phototropic. For full details on how the circuit works and how to modify it, see:
http://www.talkingelectronics.com/projects/Robots/Page6.html

ROBO ROLLER
The circuit consists of two building blocks. The Photopopper circuit and a voltage multiplying (or voltage increasing) circuit from a Solar Charger project.
For full details on how the circuit works and how to modify it, see: http://www.talkingelectronics.com/projects/Robots/Page7.html

SIGNAL BY-PASS

This circuit allows a class-A amplifier to drive a low impedance speaker and has a low quiescent current. The 220 R in series with the speaker limits the "wasted" current to about 20 mA max as the transistor is generally biased at mid-voltage. However the transistor will be almost directly driving the speaker when a signal is being processed and the only limitation is the ability of the 220R to discharge the 100u during each cycle.
The circuit is called a signal by-pass as the signal bypasses the 220R and drives the speaker directly (via the 100u).

SOUND-TO-LIGHT

The LED illuminates when the piezo diaphragm detects sound.
Some piezo diaphragms are very sensitive and produce 100 mV when whistling at 50 cm . Others produce 1 mV . You must test them with a CRO.
The sensitivity of the diaphragm will determine the sensitivity of the circuit.
The following circuit uses an electret microphone:

CLAP SWITCH - see also VOX

SOUND-TO-LIGHT with Delay

By re-arranging the components slightly from the previous circuit, we create a 15 second illumination of the LED. It will be illuminated with the clap of the hands.
The quiescent current is about 20 uA , allowing 4 AA cells to last a long time.
The circuit takes about 20 seconds to reset after the LED goes out.
The 100 u discharges through the $27 \mathrm{k}, 100 \mathrm{k}$ and 10 k resistors.
The circuit can also be designed to accept an electret microphone:

CLAP SWITCH "ON-OFF"

This circuit turns the LED ON with a clap or short whistle. And a further clap turns it OFF. It uses a speaker as a microphone and the
fourth output of the 4017 is used to reset the chip. The 100 u on pin 2 upsets the amplifier and prevents it clocking the chip, until the electro either charges or discharges. A buffer transistor can replace the LED to operate a relay. It only requires 2 mV signal to activate the circuit.

Above: A 3.5 mm switched stereo plug and socket wiring.

The transmitter is built on a small length of PC board, cut into lands with a file. The photo clearly shows how all the components are mounted and how the board is fitted into a toothbrush holder. The flashing LED shows the unit is ON and serves to control the beep-beep-beep of the circuit. The flashing LED is not an ordinary LED.
You cannot use an ordinary LED. It must be a FLASHING LED as this type of LED has a built-in resistor and a chip to make the LED flash.
The circuit does not make the LED flash, the LED makes the circuit beep-beep-beep due to the onoff from the chip inside the LED.
One constructor used an ordinary LED - and BANG! That's why we are the first in the world to create
a symbol for a flashing LED. The extra bar represents the chip inside the LED.

TRANSMITTER CIRCUIT

This is the professional unit

The receiver circuit is a high-gain amplifier and produces constant background noise so the slightest magnetic field can be detected. The 10 mH choke can be any value but the largest number of turns on the core is best.
The mini speaker can be a 16 R earpiece but these are not as loud as a mini speaker.
Quiescent current is 50 mA so the on-off switch can be a pushbutton.

CABLE TRACER

Why pay $\$ 100$ for a cable tracer when you can build one for less than $\$ 10.00$! This type of tracer is used
by telephone technicians, electricians and anyone laying, replacing or wiring anything, using long cables, such as intercoms, television or security.
Our cable tracer consists of two units. One unit has a multivibrator with an output of $4 \mathrm{v} p-\mathrm{p}$ at approx 5 kHz . This is called the transmitter. The other unit is a very sensitive amplifier with capacitive input for detecting the tone from the transmitter and a magnetic pickup for detecting magnetic lines of force from power cables carrying 240v. This is called the receiver. The circuit also has an inductive loop, made up of a length of wire, to pick up stray signals from power cables, so if one detector does not detect the signal, the other will. Our circuit is nothing like that in the professional unit shown above.

USING A TOROID INDUCTOR

Most of our circuits use a ferrite rod and NOT a TOROID. A toroid is a circular core (sometimes called a doughnut or torus or ring or annulus) and is actually the most efficient type of ferrite core because none of the flux is lost to the outside surroundings. BUT if you use a toroid, you MUST work out the amount of flux you will be generating when the transistor is turned ON and this will give you the flux density in the toroid.
But this is a very difficult thing to do. If you deliver more flux than the toroid can accept, the expanding flux will not increase at this point in time and the current taken (supplied or delivered) by the transistor will increase ENORMOUSLY and the transistor will be DESTROYED.

If you use a ferrite rod, the flux will be lost to the outside air (out the end of the rod) and the abrupt saturation-point will NOT be generated.
This means a ferrite rod is a much-more "sloppy" or "loose" or "accommodating" component and is much easier to incorporate into a circuit that has not been mathematically designed. If you want to use a toroid, the only way to "design a circuit" that does not "selfdestroy" is to add a lot more turns and gradually remove a few of the turns while feeling the output transistor for temperature-rise or measure the current taken by the circuit. Sometimes the number of turns will be reduced to 7 turns plus 7 turns for some of the circuits driving LEDs in the boost converters shown below.
Why only 7 turns for a toroid?
As the transistor turns ON, the 7 turns produces much less flux than 30 turns and the transistor can turn on for a much longer period of time. When it is fully turned ON, the core is just at the point of being fully saturated. At this instant, the flux no-longer expands (increases) and thus the voltage produced in the feedback winding ceases. This is when the "increasing" part of the cycle stops, and the "turn-off" part of the cycle starts.
This means the current through the transistor is only a maximum for a very short period of time.
That's why you have to experiment yourself and it's only when you get the circuit to work perfectly, that you will LEARN ELECTRONICS.

The workings of an inductor are much more complex than you think.

1v5 WHITE LED DRIVER

$20 \mathrm{~mm} \times 5 \mathrm{~mm}$ brass spacer

150 turns
$10 \mathrm{~mm} \times 3.8 \mathrm{~mm}$
steel machine screw

WHITE LED DRIVER

This circuit will drive a super-bright white LED from a 1.5 v cell. The 60 turn inductor is wound on a small ferrite slug 2.6 mm dia and 6 mm long with 0.25 mm wire.
The main difference between this circuit and the two circuits above is the use of a single winding and the feedback to produce oscillation comes from a 1 n capacitor driving a high gain amplifier made up of two transistors.
The feedback is actually positive feedback via the 1 n and this turns on the two transistors more and more until finally they are fully turned on and no more feedback signal is passed though the 1 n . At this point they start to turn off and the signal through the 1 n turns them off more and more until they are fully turned off.
The 33k turns on the BC557 to start the cycle again.

If you do not have a ferrite slug, the inductor can be made from a machine screw 10 mm long and about $3-4 \mathrm{~mm}$ dia. Wind 150 turns of 0.25 mm wire. Or you can use a brass ferrule 20 mm long x 5 mm . Wind 150 turns.
RESULTS for the same brightness:
Slug: 21mA Brass Spacer: 18mA
Machine screw: 14mA Isn't this a SURPRISE!

LED TORCH - 3v Supply

This circuit will drive up to 3 high-bright white LEDs from a 3v supply. (It will also work from 1.5 v)
The inductor consists of 50 turns on a 1.6 mm dia ferrite slug using 0.1 mm enamelled wire.
This circuit can use a ready-made 33 uH choke, making it suitable for mass production

LED TORCH with ADJUSTABLE BRIGHTNESS

This circuit will drive up to 3 highbright white LEDs from a 3v supply. The circuit has a pot to adjust the brightness to provide optimum brightness for the current you wish to draw from the battery.
The transformer is wound on a ferrite slug 2.6 mm dia and 6 mm long as shown in the LED Torch with 1.5 v Supply project.
This circuit is a "Boost Converter" meaning the supply is less than the voltage of the LEDs. If the supply is greater than the voltage across the LEDs, they will be damaged.

Inductor: 60 turns on 10 mm ferrite rod, 15 mm long.

BUCK CONVERTER for HIGH-POWER LED

48mA to 90 mA

This circuit is a "Buck Converter" meaning the supply is greater than the voltage of the LED. It will drive 1 high-power white LED from a 12 v supply and is capable of delivering 48 mA when $R=5 R 6$ or 90 mA when R $=2 R 2$.
The LED is much brighter when using this circuit, compared with a series resistor delivering the same current. But changing R from 5R6 to 2R2 does not double the brightness. It only increases it a small amount.
The inductor consists of 60 turns of 0.25 mm wire, on a 15 mm length of ferrite rod, 10 mm diameter.
Frequency of operation: approx 1 MHz .
The circuit is not designed to drive one 20 mA LED.
This circuit draws the maximum for a BC 338 .

MAKE YOUR OWN 1-WATT LED

15 LEDs on Matrix board

The transformer consists of 50 turns 0.25 mm wire connected to the pins. The feedback winding is 20 turns 0.095 mm wire with "fly-leads."

This circuit drives 15 LEDs to produce the same brightness as a 1 -watt LED. The circuit consumes 750 mW but the LEDs are driven with high-frequency, high-voltage spikes, and become more-efficient and produce a brighter output that if driven by pure-DC.
The LEDs are connected in 3 strings of 5 LEDs. Each LED has a characteristic voltage of 3.2 v to 3.6 v making each chain between 16 v and 18 v . By selecting the LEDs we have produced 3 chains of 17.5 v Five LEDs (in a string) has been done to allow the circuit to be powered by a $12 v$ battery and allow the battery to be charged while the LEDs are illuminating. If only 4 LEDs are in series, the characteristic voltage may be as low as 12.8 v and they may be over-driven when the battery is charging. (Even-up the characteristic voltage across each chain by checking the total voltage across them with an 19 v supply and 470R dropper resistor.) The transformer is shown above. It is wound on a 10 mH choke with the original winding removed. This circuit is called a "boost circuit." It is not designed to drive a single 1-watt LED (a buck circuit is needed).
The LEDs in the circuit are $20,000 \mathrm{mcd}$ with a viewing angle of 30 degrees (many of the LED specifications use "half angle." You have to test a LED to make sure of the angle). This equates to approximately 4 lumens per LED. The 4-watt CREE LED claims 160 lumens (or 40 lumens per watt). Our design is between $50-60$ lumens per watt and it is a much-cheaper design.

18 LEDs using a 3.7v Li-lon CELL

This circuit drives 18 white LEDs from a 3.7 v Li-Ion cell. It has been designed by Samuel Budiyanto budiyantosamuel90@gmail.com using components from an old Compact Fluorescent Lamp. No data is available on the 1 mH inductor and the circuit has been provided for experimentation purposes ONLY.
It is an interesting circuit because the two transistors provide a constant brightness and the BC547 provides feedback to keep the circuit oscillating.
The 10k base resistor seems very high but the circuit has been tested for 12 hours on a $1200 \mathrm{~mA}-\mathrm{Hr}$ cell and the brightness remained constant.
The brightness is determined by how hard you drive the 2SD882 transistor.
It is turned on by the 10 k resistor and this will deliver very little current, but since the transistor has a gain of 100 to 300 , the collector current will be up to about 100 mA .
Basically the circuit will over-drive the LEDs and the BC547 will limit the current to the required brightness level.
The BC547 transistor has the effect of turning OFF the 2SD at a particular instant in each cycle to reduce the time when it is turned ON. The BC547 gets its "timing" from the 10k and 1 k resistors, by the fact that these resistors form a voltage divider to produce a voltage on the base. When the 2SD turns ON, a voltage is developed across the 10R that adds to this voltage but it is delayed slightly by the 1 n capacitor. The 1 n determines the frequency at which the circuit will oscillate. By experimenting with these 4 components you get the required brightness and this remains constant for the life of the cell.
All the LEDs are in series on each string and the brightness will depend on matching each string. By swapping some of the LEDs you will be able to adjust the brightness to make them all emit equally.

1-WATT LED - a very good designn

Circuit takes 70 mA on LOW brightness and 120 mA on HIGH Brightness
 see MOD below

This circuit has been specially designed for a 6 v rechargeable battery or $5 \times 1.2 \mathrm{v} \mathrm{NiCad}$ cells. Do not use any other voltage. It has many features:
The pulse-operation to the two 1 -watt LEDs delivers a high current for a short period of time and this improves the brightness. The circuit can drive two 1 -watt LEDs with extremely good brightness and this makes it more efficient than any other design. The circuit is a two-transistor highfrequency oscillator and it works like this: The BD139 is turned ON via the base, through the white LED and two signal diodes and it amplifies this current to appear though the collector-emitter circuit. This current flows though the 1 -watt LED to turn it ON and also through the 30 -turn winding of the inductor. At the same time the current through the 10R creates a voltage-drop and when this voltage rises to 0.65 v , the BC547 transistor starts to turn ON. This robs the base of the BD139 of "turn-on voltage" and the current through the inductor ceases to be expanding flux, but stationary flux.

The 1 n capacitor was initially pushing against the voltage-rise on the base of the BC547 but it now has a reverse-effect of allowing the BC547 to turn ON.
This turns off the BD139 a little more and the current through the inductor reduces.
This creates a collapsing flux that produces a voltage across the coil in the opposite direction. This voltage passes via the 1 n to turn the BC547 ON and the BD139 is fully turned OFF.
The inductor effectively becomes a miniature battery with negative on the lower LED and positive at the anode of the Ultra Fast diode. The voltage produced by the inductor flows through the UF diode and both 1 -watt LEDs to give them a spike of high current. The circuit operates at approx 500 kHz and this will depend on the inductance of the inductor.
The circuit has about 85% efficiency due to the absence of a current-limiting resistor, and shuts off at 4 v , thus preventing deep-discharge of the rechargeable cells or 6 v battery.
The clever part of the circuit is the white LED and two diodes. These form a zener reference to turn the circuit off at 4 v . The 10 k resistor helps too.
The circuit takes 70 mA on low brightness and 120 mA on HIGH brightness via the brightness-switch. The LEDs actually get 200 mA pulses of current and this produces the high brightness.

The Inductor

The coil or inductor is not critical. You can use a broken antenna rod from an AM radio (or a flat antenna slab) or an inductor from a computer power supply. Look for an inductor with a few turns of thick wire (at least 30) and you won't have to re-wind it.
Here are two inductors from surplus outlets:
http://www.goldmine-elec-products.com/prodinfo.asp?number=G16521B

- 50 cents
http://www.allelectronics.com/make-a-store/item/CR-345/345-UH-TOROIDAL-INDUCTOR/1.htmI 40cents

Here are the surplus inductors:

The cost of surplus is from 10 cents to 50 cents, but you are sure to find something from a computer power supply.
Pick an inductor that is about 6 mm to 10 mm diameter and 10 mm to 15 mm high. Larger inductor will not do any damage. They simply have more ferrite material to store the energy and will not be saturated. It is the circuit that delivers the energy to the inductor and then the inductor releases it to the LEDs via the high speed diode.

IMPROVEMENT

By using the following idea, the current reduces to 90 mA and 70 mA and the illumination over a workbench is much better than a single high-power LED. It is much brighter and much nicer to work under.
Connect fifteen 5 mm LEDs in parallel (I used 20,000mcd LEDs) by soldering them to a double-sided strip of PC board, 10 mm wide and 300 mm long. Space them at about 20 mm . I know you shouldn't connect LEDs in parallel, but the concept works very well in this case. If some of the LEDs have a characteristic high voltage and do not illuminate very brightly, simply replace them and use them later for another strip.
You can replace one or both the 1 -watt LEDs with a LED Strip, as shown below:

No current-limit resistor. . . why isn't the LED damaged?

Here's why the LED isn't damaged:
When the BD139 transistor turns ON, current flows through the LEDs and the inductor. This current gradually increases due to the gradual turning-on of the transistor and it is also increasing through the inductor. The inductor also has an effect of slowing-down the "in-rush" of current due to the expanding flux cutting the turns of the coil, so there is a "double-effect" on avoiding a high initial current. That's why there is little chance of damaging the LEDs.
When it reaches 65 mA , it produces a voltage of $.065 \times 10=650 \mathrm{mV}$ across the 10 R resistor, but the 1 n is pushing against this increase and it may have to rise to 150 mA to turn on the BC547. LEDs can withstand 4 times the normal current for very short periods of time and that's what happens in this case. The BD139 is then turned off by the voltage produced by the inductor due to the collapsing magnetic flux and a spike of high current is passed to the LEDs via the high speed diode. During each cycle, the LEDs receive two pulses of high current and this produces a very high brightness with the least amount of energy from the supply. All the components run "cold" and even the 1 -watt LEDs are
hardly warm.

Charging and Discharging

This project is designed to use all your old NiCad cells and mobile phone batteries.
It doesn't matter if you mix up sizes and type as the circuit takes a low current and shuts off when the voltage is approx 4 v for a 6 v pack.
If you mix up $600 \mathrm{~mA}-\mathrm{Hr}$ cells with $1650 \mathrm{~mA}-\mathrm{Hr}, 2,000 \mathrm{~mA}-\mathrm{Hr}$ and $2,400 \mathrm{~mA}-\mathrm{Hr}$, the lowest capacity cell will determine the operating time.
The capacity of a cells is called "C."
Normally, a cell is charged at the 14 hour-rate.
The charging current is 10% of the capacity. For a $600 \mathrm{~mA}-\mathrm{Hr}$ cell, this is 60 mA . In 10 hours it will be fully charged, but charging is not 100% efficient and so we allow another 2 to 4 hours.
For a $2,400 \mathrm{~mA}-\mathrm{Hr}$ cell, it is 240 mA . If you charge them faster than $14-\mathrm{hr}$ rate, they will get HOT and if they get very hot, they may leak or even explode. But this project is designed to be charged via a solar panel using 100 mA to 200 mA cells, so nothing will be damaged.
Ideally a battery is discharged at $\mathrm{C} / 10$ rate. This means the battery will last 10 hours and for a $600 \mathrm{~mA}-\mathrm{Hr}$ cell, this is 60 mA . If you discharge it at the "C-rate," it will theoretically last 1 hour and the current will be 600 mA . But at 600 mA , the cells may only last 45 minutes. If you discharge is at $\mathrm{C} / 5$ rate, it will last 5 hours.
Our project takes 120 mA so no cell will be too-stressed. A $600 \mathrm{~mA}-\mathrm{Hr}$ cell will last about $4-5$ hours, while the other cells will last up to 24 hours. Try to keep the capacity of each cell in a "battery-pack" equal.

MODIFICATIONS FROM A READER budiyantosamuel90@gmail.com

The 390R changed to 1 k . The 1 n changed to 470 p . Replaced the UF4004 with $4 \times 1 \mathrm{~N} 4148$ in parallel.
The result is amazing, much brighter! I can't believe it.
I put 20 white LEDs in a LED strip... and it works nicely.
Much brighter than two 1 Watt LEDs.
Colin: If the length of a ferrite rod is too short, the magnetic material will saturate and it will not accept any more current and it will start to produce losses by heating-up. A toroid may work better because it will accept a higher flux density because the magnetic path does not have an air gap. (a ferrite rod is said to have an air-gap at the ends of the rod). That's why a toroid will be smaller than a rod.

DRIVE 20 LEDs FROM 12v - approx 1watt circuit

This is another circuit that drives a number of LEDs or a single 1 watt LED. It is a "Buck Circuit" and drives the LEDs in parallel. They should be graded so that the characteristic voltage-drop across each of them is within 0.2 v of all the other LEDs. The circuit will drive any number from 1 to 20 by changing the "sensor" resistor as shown on the circuit. The current consumption is about $95 \mathrm{~mA} @ 12 \mathrm{v}$ and lower at 18 v . The circuit can be put into dim mode by increasing the drive resistor to 2k2. The UF4004 is an ultra fast 1N4004-similar to a high-speed diode. You can use 2 x 1N4148 signal diodes.

The circuit will not drive two LEDs in series - it runs out of voltage (and current) when the voltage across the load is 7 v . It oscillates at approx 200 kHz . Build both the 20 LED and 1 watt LED version and compare the brightness and effectiveness. The photo of the 1 watt LED on the left must be heatsinked to prevent the LED overheating. The photo on the circuit diagram shows the LED mounted on a heatsink and the connecting wires.

A 1-watt demo board showing the complex step-up circuitry.

This is a Boost circuit to illuminate the LED and is completely different to our design. It has been included to show the size of a 1 watt LED.
The reason for a Boost or Buck circuit to drive one or more LEDs is simple. The voltage across a LED is called a "characteristic voltage" and comes as a natural feature of the LED. We cannot alter it. To power the LED with exactly the correct amount of voltage (and current) you need a supply that is EXACTLY the same as the characteristic voltage. This is very difficult to do and so a resistor is normally added in series. But this resistor wastes a lot of energy. So, to keep the loses to a minimum, we pulse the LED with bursts of energy at a higher voltage and the LED absorbs them and produces light. With a Buck circuit, the transistor is turned on for a short period of time and illuminated the LEDs. At the same time, some of the energy is passed to the inductor so that the LEDs are not damaged. When the transistor is turned off, the energy from the inductor also gives a pulse of energy to the LEDs. When this has been delivered, the cycle starts again.

BUCK CONVERTER for 3watt LED

This circuit drives a 3watt LED. You have to be careful not to damage the LED when setting up the circuit. Add a 10R to the supply rail and hold it in your fingers. Make sure it does not get too hot and monitor the voltage across the resistor. Each 1 v represents 100 mA . The circuit will work and nothing will be damaged. If the resistor "burns your fingers" you have a short circuit.
The BC557 multivibrator has a "mark-to-space ratio" determined by the 22 n and 33 k , compared to the 100 n and 47 k , producing about 3:1 The BD679 is turned ON for about 30% of the time. This produces a very bright output, and takes about 170 mA for 30% of the time. You cannot measure this current with a meter as it reads the peak value and the reading will be totally false. The only way to view the waveform is on a CRO, and calculate the current.
The 100-turn inductor allows the BD679 turn turn ON fully and "separates" the voltage on the emitter of the BC679 from the voltage on the top of the 3watt LED.
When the BD679 turns ON, the emitter rises to about 10 v . But the top of the LED NEVER rises above 3.6 v . The inductor "buffers" or "separates" these two voltages by producing a voltage across the winding equal to 6.4 v and that's why the LED is not damaged.
When the transistor turns off (for 60% of the time), the magnetic flux produced by the current in the inductor collapses and produces a voltage in the opposite direction. This means the inductor now becomes a miniature battery and for a very short period of time it produces energy to illuminate the LED. The top of the inductor becomes negative and the bottom is positive. The current flows through the LED and through the Ultra High-Speed 1N4004 diode to complete the circuit. Thus the circuit takes advantage of the energy in the inductor.
A 500R pot is placed across the LED and a voltage is picked off the pot to turn on a BC547 transistor. This transistor "robs" some of the "turn-on" for the BD679 transistor to reduce the brightness of the LED.
Because the circuit is driving the LED with pulses, very high brightness is obtained with a low current. Our eyes detect peak brightness and you can compare the performance of this circuit with a DC driven LED.

CONSTANT CURRENT DRIVES TWO 3WATT LEDs

The value of the current-lirriting resistor:
Resistor(Ohms) $=1.25$ (V) $/$ current (A)
http://www.reuk.co.uk/LM317-Current-Calculator.htm
This constant current circuit is designed to drive two 3-watt Luxeon LEDs. The LEDs require $1,000 \mathrm{~mA}$ (1Amp) and have a characteristic voltage-drop across them of about 3.8 v . Approximately 4 v is dropped across the LM317T regulator and 1.25 v across the current-limiting resistors, so the input voltage (supply) has to be 12.85 v . A 12v battery generally delivers 12.6 v .
The LM 317T 3-terminal regulator will need to be heatsinked.
This circuit is designed for the LM series of regulator as they have a voltage differential of 1.25 v between "adj" and "out" terminals.

AUTOMATIC GARDEN LIGHT

This circuit automatically turns on and illuminates the LEDs when the solar panel does not detect any light. It switches off when the solar panel produces more than 1 v and charges the battery when the panel produces more than $1.5 v+0.6 v=2.1 v$

AUTOMATIC BATHROOM LIGHT or PASSAGE LIGHT

by Samuel Budiyanto budiyantosamuel90@gmail.com
This circuit is for all those who experience black-outs and "power-outs."

It uses a 5 v charger from an old mobile phone to trickle charge a 3.6 v cell or 2 x lead acid cells. Use a small toroid about 40 mm diameter or a 10 mm ferrite rod 40 mm long and 0.25 mm wire. Keep the charge to 10 mA to 20 mA and the LEDs will come on every time the power fails. My circuit has been working for the past 7 months. If the LEDs don't illuminate with equal brightness, change them around and they will equalise.

AUTOMATIC SOLAR LIGHT

This circuit automatically turns on and illuminates the LEDs when the solar panel does not detect any light. It switches off when the solar panel produces more than 0.5 v above the battery voltage.
You can use any number of white LEDs. LEDS should not be connected in parallel, however they work if you selects LEDs that produce the same brightness. Any dull LEDs can be used in another circuit.
When the solar panel receives sunlight, the voltage on the base of the transistor keeps it turned OFF. When the panel receives no illumination, the 470R and 1 k resistors turn the transistor ON. You can use a 6 v 0.5 watt or 1 watt solar panel and the first circuit uses an NPN transistor while the second circuit uses a PNP transistor.
The output of the solar panel automatically adjusts to the voltage of the battery and as more light is detected by the panel, the current increases.
A 0.5 watt panel contains 100 mA cells and a 1 watt panel contains 200 mA cells. The battery can have any capacity from 600 mAHr to 1800 mAHr .
We are assuming the battery is used all night and is flat in the morning.
A 600 mAHr battery will take $6-8$ hours to fully charge with a 0.5 watt panel and a 1800 mAHr battery will take 2 days to charge with a 1 watt panel.
Each white LED requires about 20 mA for good brightness and the 47R resistor will have to be adjusted to suit the battery voltage and the number of LEDs.
The third circuit uses a 12 v 0.5 watt or 1 watt solar panel and the circuit is much more efficient as 3 white LEDs can be connected in series for each 20 mA of current.

27MHz DOOR PHONE

This circuit turns a walkie talkie into a handy wireless door phone. It saves wiring and the receiver can be taken with you upstairs or outside, without loosing a call from a visitor.
A 5-Transistor walkie talkie can be used (see circuit above) and the modifications made to the transmitter and receiver are shown below:

THE TRANSMITTER

Only three sections of the transmit/ receive switch are used in the walkie talkie circuit and our modification uses the fourth section. Cut the tracks to the lands of the unused section so it can be used for our circuit.
There are a number of different printed circuit boards on the market, all using the same circuit and some will be physically different to that shown in the photo. But one of the sections of the switch will be unused.
Build the 2-transistor delay circuit and connect it to the walkie talkie board as shown. When the "push-to-talk" switch is pressed, the PC board will be activated as the delay circuit effectively connects the negative lead of the battery to the negative rail of the board for about 30 seconds. The 100u gradually discharges via the 1 M after the "press-to-talk" switch is released and the two transistors turn off and the current drops to less than 1 micro-amp that's why the power switch can be left on. .
The transmitter walkie talkie is placed at the front door and the power switch is turned on. To call, push the "push-to-talk" switch and the "CALL" button at the same time for about 5 seconds. The circuit will activate and when the "push-to-talk" switch is released, the circuit will produce background noise for about 30 seconds and you will hear when call is answered.
The "push-to-talk" switch is then used to talk to the other end and this will activate the circuit for a further 30 seconds. If the walkie talkie does not have a "CALL" switch, 3 components can be added to provide feedback, as shown in the circuit below, to produce a tone.

THE RECEIVER

The receiver circuit needs modification and a 2-transistor circuit is added. This circuit detects the tone and activates the 3-transistor direct-coupled amplifier so that the speaker produces a tone. The receiver circuit is switched on and the 2-transistor circuit we connect to the PC board effectively turns on the 3-transistor amplifier so that the quiescent current drops from 10 mA to about $2-3 \mathrm{~mA}$. It also mutes the speaker as the amplifier is not activated. The circuit remains on all the time so it will be able to detect a "CALL." When a tone is picked up by the first two transistors in the walkie talkie, it is passed to the first transistor in our "add-on" section and this transistor produces a signal with sufficient amplitude to remove the charge on the 1u electrolytic. This switches off the second transistor and this allows the 3-transistor amplifier to pass the tone to the speaker. The operator then slides a switch called "OPERATE" to ON (down) and this turns on the 3-transistor amplifier. Pressing the "push-to-talk" switch (labelled T/R) allows a conversation with the person at the door. Slide the "OPERATE" switch up when finished.

The receiver walkie talkie with the 2-transistor "add-on"

SCHMITT TRIGGER

A Schmitt Trigger is any circuit that has a fast change-over from one state to the other. In our case we have used 2 transistors to produce this effect and the third is an emitter-follower buffer.
The circuit will drive a LED or relay and the purpose is to turn the LED ON quickly at a particular level of illumination and OFF at a higher level. The gap between ON and OFF is called the HYSTERESIS GAP.

SCHMITT TRIGGER-2

The following circuit is a Schmitt Trigger made with NPN and PNP

transistors:

SCHMITT TRIGGER-3

The following circuit is another Schmitt Trigger made with NPN and PNP transistors. The 100k "stop resistor" on the 100k prevents the circuit turning ON when the pot is near the supply rail.

PHONE TAPE - 1

This simple circuit will allow you to tape-record a conversation from a phone line. It must be placed between the plug on the wall and the phone.
The easiest way is to cut an extension lead. Wind 300-500 turns of 0.095 mm wire on a plastic straw and place the reed switch inside. Start with 300 turns and see if the reed switch activates, Keep adding turns until the switch is reliable.
Fit two 100n capacitors to the ends of the winding for the audio. Plug the Audio into "Mic" on tape recorder. Plug the remote into "remote" on the tape recorder and push "record." The tape recorder will turn on when the phone is lifted and record the conversation.

PHONE TAPE - 2

The circuit is turned off when the phone line is 45 v as the voltage divider made up of the $470 \mathrm{k}, 1 \mathrm{M}$ and 100 k puts 3.5 v on the base of the first BC557 transistor. If you are not able to cut the lead to the phone, the circuit above will record a conversation from an extension lead. The remote plug must be wired around the correct way for the motor to operate.

PHONE ALERT-2 (for mobile phone)

This circuit detects the RF when the phone is communicating with the tower during the hand-shaking prior to it ringing.
The 1SS86 is a Silicon Schottky Barrier Diode for UHF circuits and is 100 times more sensitive than a 1N4148 signal diode. Many of the "clone" 1SS86 diodes (fake or really another type of diode) sold on eBay NOT NOT WORK. The characteristics of the 1SSS86 are really amazing.
This is an ideal circuit to test different diodes.

The first transistor is biased ON and the signal (waveform) developed across the coil takes the cathode end of the diode NEGATIVE for part of the cycle and this puts a slightly lower voltage on the left lead of the 10n capacitor. The right-lead follows and a slightly lower voltage is applied to the base of the transistor. The transistor turns OFF slightly and this effect is passed to the other two transistors to flash the LED.
With 1 N 4148 , the phone must be 10 cm from the project. With a 1 SS 86 it can be one metre away. The circuit takes about 1 mA .

A kit is available from Talking Electronics for $\$ 3.00$ plus $\$ 4.50$ postage. The project is built on Matrix Board as shown in the drawing above. Phone Alert kit

THE LISTENER

This circuit consists of a 4-transistor amplifier and a 3-transistor "switch" that detects when the phone line is in use, and turns on the amplifier. The voltage divider at the front end produces about 11 v on the base of the first BC557 and this keeps the transistor off. Switch the unit off when removed from the phone line.

PHONE TRANSMITTER - 1 see also Phone Bug circuit in: 101-200 circuits

The circuit will transmit a phone conversation to an FM radio on the $88-108 \mathrm{MHz}$ band. It uses energy from the phone line to transmit about 100metres. It uses the phone wire as the antenna and is activated when the phone is picked up. The components are mounted on a small PC board and the lower photo clearly shows the track-work.

PHONE TRANSMITTER - 2 see also Phone Bug (101-200 circuits)
The circuit will transmit a phone conversation to an FM radio on the $88-108 \mathrm{MHz}$ band. It uses energy from the phone line to transmit about 200metres. It uses the phone wire as the antenna and is activated when the phone is picked up.

PHONE TRANSMITTER - 3 see also Phone Bug (101-200 circuits) This circuit has poor features but you can try it and see how it performs. It uses a PNP transistor and requires a separate antenna. It also has a supply of less than 1.9 v , via the red LED. It would be better to put 2 LEDs in series to get a higher voltage. It is activated when the phone is picked up.

PHONE TRANSMITTER - 4 see also Phone Bug (101-200 circuits)

Fig.1-Here's the FM Telephone Transmitter schematic diagram. The circuit connects in series with a phone line, "steals" power from it, and transmit both sides of the conversation to an FM radio tuned between $80 \cdot 108 \mathrm{MHz}$

The circuit was originally designed by me and presented in Poptronics magazine. It will transmit a phone conversation to an FM radio on the $88-108 \mathrm{MHz}$ band. It uses energy from the phone line to transmit about 200metres and uses the phone wire as the antenna. It is activated when the phone is picked up. The 22p air trimmer is shown as well as the 3 coils. Q2 is a buffer transistor between the oscillator and phone line and will provide a higher output than the previous circuits.

MUSIC ON HOLD

This simple circuit delivers audio to the phone line from the "audio-out" of a tape recorder or radio.

Adjust the volume control of the radio to produce a suitable level of audio.
Use 400 v capacitors to be on the safe-side.

ROBOT-1

A simple robot can be made with 2 motors and two light-detecting circuits, (identical to the circuit above). The robot is attracted to light and when the light dependent resistor sees light, its resistance decreases. This turns on the BC547 and also the BC557. The shaft of the motor has a rubber foot that contacts the ground and moves the robot. The two pots adjust the sensitivity of the LDRs. This kit is available from Velleman as kit number MK127.

SWITCH DEBOUNCER and PULSE PRODUCER

Thus is one of the simplest and cleverest circuits ever produced (by Ron: http://www.zen22142.zen.co.uk/ronj/tg1.html
Ron says: It produces a complete pulse every time the button is pressed. When the button is pressed, the output goes low for 3uS and produces a pulse to activate the clock-line of a chip. Our circuit produced 100\% reliability and the cap takes 0.1 sec to discharge.
The circuit does not have any filtering to prevent switch noise as it relying on the fact that a single pulse is produced in 3uS and the circuit assumes no switch noise can be produced in that time-interval.

8
100 more transistor circuits: 101-200 Circuits
Go to Talking Electronics website: HERE for "new page" format click: HERE

BIPOLAR TRANSISTORS

Some small signal transistors may have a TO－92 case and a＂PN＂prefix．The electrical specifications are the same，only the case is changed．

Type	CASE	Vee	$\mathrm{V}_{\text {ce }} \mathrm{I}_{\mathrm{c}}$	Veme	隹	$\mathrm{hfF}^{\text {fe }}$	（0）	FT	W1c	Ртот	USE	COMPARABL TYPES
	Polarity	mA			mA		mA	MHz	mA	min		
BC107	TO－18 NS	45	50100	0.2	10	110450	2	300	10	300	G．P S．S．amp．	BC 207，BC147，日C
BC108	TO－18 NS	20	30100	0.2	10	110－800	2	300	10	300	G．P S．S．amp．	BC 208，BC148，日C
BC109	TO－18 NS	20	30100	0.25	10	$200-800$	2	300	10	300	Low noise S．S．amp	BC 209，BC149，BC
BC109C	TO－18 NS	20	30100	0.25	10	$420-800$	2	300	10	300	Low noise high gain	BC209C BC149C
BC177	TO－18 PS	45	50100	0.3	10	75－260	2	150	10	300	G．P S．S．amp．	BC 157，BC307，日C
BC178	TO－18 PS	25	30100	0.3	10	75－500	2	150	10	300	G．P．S．S．amp．	BC158，BC 308，日C
BC178	TO－18 PS	20	25100	0.3	10	125－500	2	150	10	300	G．P S．S．amp．	BC 159，BC309． BC
BC327	TO－92VAR1 PS	45	50500	0.7	500	100－600	100	100	10	625	Output	2N3638
BC328	TO－92VAR1 PS	25	$30 \quad 500$	0.7	500	100－600	100	100	10	625	Output	BC 327
BC337	TO－92VAR1 NS	45	$50 \quad 500$	0.7	500	$100-600$	100	100	10	625	Output	2N3642
BC338	TO－92VAR1 NS	25	$30 \quad 500$	0.7	500	100－600	100	100	10	625	Output	BC337
BC546	TO－92VAR1 NS	65	80100	0.6	100	110－450	2	300	10	500	G．P S．S．amp．	
BC547	TO－92VAR1 NS	45	50100	0.6	100	110－800	2	300	10	500	G．P S．S．amp．	BC 107，BC207，BC
BC548	TO－92VAR1 NS	30	30	0.6	100	110－800	2	300	10	500	G．P．S．S．amp．	BC 108，BC208，BC
BC549	TO－92VAR1 NS	30	$30 \quad 100$	0.6	100	200－800	2	300	10	500	Low noise S．S．amp．	BC 109，BC209，BC
BC549C	TO－92VAR1 NS	30	30100	0.6	100	420－800	2	300	10	500	Low noise high gain	BC 109C，BC149C
BC556	TO－92VAR1 PS	65	80100	0.65	100	75－475	2	200	10	500	G．P．S．S．amp．	
BC557	TO－92VAR1 PS	45	50100	0.65	100	75－800	2	200	10	500	G．P．S．S．amp．	BC157
BC558	TO－92VAR1 PS	30	30100	0.65	100	75－800	2	200	10	500	G．P．S．S．amp．	BC 158
BC559	TO－92VAR1 PS	30	30100	0.65	100	125－800	2	200	10	500	G．P．S．S．amp．	BC 159
BC639	TO－92（74）NS	80	100 1A	0.5	500	40－250	150	130		1）${ }^{\text {d }}$	Audio 0／P	MU9610，TT801
BC640	TO－92（74）PS	80	100 1A	0.5	500	40－250	150	50		17	Audio 0．P	MU9660，TT800
BD139	TO－126 NS	80	10 1．5A	0.5	500	40－250	150	250	50	8 V	G．P．0／P	40409
BD140	TO－126 PS	80	10 1．5A	0.5	500	40－250	150	75	50	8 M	G．P．0．P	40410
BD262	TO－126 PS	60	60 4A	2.5	1．5A	750	154	7	1．5A	367	High gain Darl．0／P	BD 266
BD263	TO－126 NS	60	80 4A	2.5	1．5A	750	15a	7	1．5A	367	High gain Darl．0／P	BD267
BD266A	TO－220 PS	80	80 8A	2	3A	750	3A	7		60\％	High gain Darl．0／P	
BD267A	TO－220 NS	80	10 8A	2	3A	750	3A	7		607	High gain Darl．0／P	
BD681	TO－126 NS	100	10 4A	2.5	1，5A	750	15A	1		40 NV	Darlington 0／P	BD 263
BD682	TO－126 PS	100	100 4A	2.5	1．5A	750	15A	1		40 WN	Darlington 0／P	BD 262
BF173	TO－72（28）NS	25	$40 \quad 25$			40－100	7	550	5	230	T．V．I．F．amp．	
BF199	TO－92VAR2 NS	25	$40 \quad 25$			37	7	550		500	H．F．amp．	BF180
BF463	TO－202 PS	250	$25 \quad 500$			40－180	30	20		2 V	H．V．med．power．	
BF469	TO－126 NS	250	$25 \quad 50$			50	25	60	10	1.8 N	G．P high－V．amp．	
BF470	TO－126 PS	250	$25 \quad 50$			50	25	60	10	1.8 N	G．P．tigh－V．amp．	
BFR90	SOT－37（2）NS	15	$20 \quad 25$			25－250	14	5 GHz	14	180	Moldeband amp．．	
BFR91	SOT－37（2）NS	12	$15 \quad 35$	0.3	30	25－250	30	5 GHz	30	180	Módeband amp．	
BFY90	TO－72（25）NS	15	$30 \quad 25$			25－125	2	1 GHz	2	200	Wofdeband amp．	
BUX80	TO－3 NS	400	80 10A	1.5	5A	30	12A	8		1000N	Defl＇n ，high current	
M J802	TO－3 NS	90	10 30A	0.8	7．5A	25－100	75A	2	1A	200N	High power output	
M J2955	TO－3 PS	60	70 15A	1.1	4A	$20-70$	4A	2.5	500	115m	G．P．power	
M J4502	TO－3 PS	90	10 30A	0.8	7．5A	25－100	75A	2	1A	200N	High power output	
MJ10012	TO－3 NS	400	60 10A	2	6A	100－2K	6A			1751／	Power Darlington	
MJ15003	TO－3 NS	140	14 20A	1	5A	25－150	5A	2	500	2500N	High power output	
MJ15004	TO－3 PS	140	140 20A	1	5A	25－150	5A	2	500	250 N	High power output	
M JE 340	TO－126 NS	300	500	0.75	100	30－240	50			200 N	G．P．H．V．power	

Type	CASE		Vee	$V_{\text {ce }}$		Veec	(义) $\mathrm{h}_{\text {Fe }}$	(\%)	FT	@10	$\mathrm{P}_{\text {тот }}$	USE	COMPARABL TYPES
		arity	mA				mA	mA	MHz	mA	miN		
MJE 350т	TO-126	PS	300		500	0.77	$10030-240$	50			20 N	G.P.H.V. nower	
MJE2955	TO-220	PS	60	70	10A	1.1	4A 20-100	4A	2	500	75N	G.P. power	TIP 2955
MJE3055T	TO-220	NS	60	70	10.A	1.1	4A 20-100	4A	2	500	75N	G.P. power	TIP 3055
MPSA14	TO-92(72)	NS	30	30	500	1.5	10020000	100	125	10	625	G.R Darlington	
MPSA65	TO-92(72)		30	30	500	1.5	10020000	100	100	10	625	G.P. Darlington	
MRF629	TO-39A	NS	16	36	400		20-200	100			5N	UHF power	
MRF660	TO-220A		16	36	2.4A		20-160	250			25N	UHF power	
PN100	TO-92(72)	NS	35	60	500	0.5	100 60-240	150	350	50	600	G.P. amplisutch	PN2222, 2N3643
PN2907	TO-92(72)		40	60	600	0.4	$150100-300$	150	200	50	625	High S. switch	
PN200	TO-92(72)		35	60	500	0.5	$150 \quad 50-400$	150	200	50	600	G.P. ampknitch	2N3638, BC214
TIP 31B	TOP-66	NS	80	80	3A	1.2	3A 25	1A	3	500	40N	Pover output	
TIP 32日	TOP-66	PS	80	80	3A	1.2	3A 25	1A	3	500	40N	Power output	
TIP 142	TOP-3	NS	100	100	10A	2	5 A >1000	5A			125 N	Audio output	TIP 140, TIP 141
TIP147	TOP - 3	PS	100	100	10A	2	$5 A>1000$	5A			125 W	Audio output	TIP145, TIP146
TIP 2955	TOP-3	PS	70	100	15A	1.1	4A 20	4A	3	500	90N	Pover output	MJE 2955
TIP 3055	TOP-3	NS	70	100	15A	1.1	4A 20	4A	3	500	90N	Power output	MJE 3055
2N2222A	TO-18	NS	40	75	800	1.6	500 00-300	150	300	20	500	High S. switch	
2N3019	TO.39	NS	80	140	1A	0.5	500 50-100	500	100	50	800	H.F. amp	
2N3053	TO-39	NS	40	60	700	1.4	150 50-250	150	100	50	2.86 W	G.R switch	BD137
2N3054	TO-66	NS	60	90	4A	0.1	200 25-100	500	0.8	200	25N	Adudio outbut	TIP 31B
2N3055	TO-3	NS	60	70	15A	1.1	4A 20-70	4A	2.5	500	115N	Q.P. power	BD Y20
2N3563	TO-106	NS	15	30	50		0-200	8	600	8	200	RF-IF amp	BF173
2N3564	TO-106	NS	15	30	100	0.3	$20 \quad 20-500$	15	400	15	200	RF-IF amp	BF167
2N3565	TO-106	NS	25	30	50	0.35	1 150-600	1	400	1	200	Lowlevel amp	BC108, EC208
2N3566	TO-105	NS	30	40	200	1	100 50-600	10	40	30	300	G.R amp \& switch	BC183
2N3567	TO-105	NS	40	80	500	0.25	150 40-120	150	60	50	300	G.P. amp \& switch	BC337
2N3568	TO-105	NS	60	80	500	0.25	150 40-120	150	60	50	300	G.P. amp \& switch	
2N3569	TO-105	NS	40	80	500	0.25	150 00-300	150	60	50	300	G.P. amp \& switch	
2N3638A	TO-105	PS	25	25	500	0.25	50100	50	150	50	300	G.P. amp \& switch	BC328
2N3641	TO-105	NS	30	60	500	0.22	150 40-120		250	50	350	G.P. amp \& switch	BC337
2N3642	TO-105	NS	45	60	500	0.22	150 40-120		250	50	350	G.R amp \& switch	BC337
2N3643	TO-105	NS	30	60	500	0.22	$150100-300$	150	250	50	350	G.P. amp \& switch	BC337
2N3644	TO-105	PS	45	45	500	1	$300100-300$	150	200	20	300	G.P. amp \& switch	BC327
2N3645	TO-105	PS	60	60	500	1	$300100-300$	150	200	20	300	G.P. amp \& switch	
2N3771	TO-3	NS	40	50	30A	2	15A 15-60	15A	0.2	1A	1501	Power output	
2N3866	TO-39	NS	30	55	400		0-200	50	500	50	1 W	VHF amp	
2N3904	TO-92(72)		40	60	200	0.2	10 00-300	10	300	10	310	Lowleved amp	BC167A, BF194
2N3905	TO-92(72)		40	40	200	0.4	$50 \quad 50-200$	10	200	20	310	G.P. amp \& switch	
2N3948	TO-39	NS	20	36	400		15	50	700	50	17	VHF amp	
2N4030	TO-39	PS	60	60	1A	0.5	50025	500	260	100	800	G.P. amp \& switch	
2N4250	TO-106	PS	40	40	100	0.25	10 50-700	0.1	50		200	Lowleved amp	BC559
2N4258	TO-106	PS	12	12	50	0.5	50 30-120	10	700	10	200	Saturated switch	
2N4427	TO-39	NS	20	40	400	0.4	$10010-200$	100	500	50	1 W	VHF MHF driver	2N3866
2N5401	TO-92(72)	PS	150	160	6000	0.5	$50 \quad 60-250$	10	100	10	625	H.V. switch	MPSL51
2N6557	TO-202	NS	250	250	500		>40	50	45		2 N	H.V. med power	
2SC710	TO-92/76	NS	25	30	30		90		100		200	Q.P. RF amp	BFS18
2SC1306	TOP-66	NS	65	65	3A		0-200	500	300		12 N	H.F. output	2SC2166
2SC1307	TOP-66	NS	70	70	8A		0-150	2A	150		25N	H.F. output	2SC1969
2SC1674	TO-92(74)	NS	20	30	20	0.3	10 40-180	1	600	1	250	VHP amp	
2SC1969	TOP-66	NS	30	60	6A		0-180	10	150		20N	H.F output	2SC1307
2SC2166	TOP-66	NS	75	75	4A		5-180	100					
2SC2694	T-40	NS	17	35	20A		0-180	1A	800		140 N	VHF outnut	MRF247
2SC3355	TO-92 (74)	NS	12	20	100		0-300	20	6.5 GHz	20	600	UHFSS	MRF573
2SC3358	MX	NS	12	20	100		0-300	20	7 GHz	20	250	UHFSS	MRF573

(

All the resistor colours:

-R0 ILE]	-10R III	100R IIIT)	1k0 IIL		
-12 ${ }^{\text {IID }}$ -	12R III ${ }^{\text {- }}$	120R IIID -	-122 IIIU		
-1R5 IIW -	-15R \|ll ${ }^{\text {- }}$	-150R IIIT -	-1k5 IIIT -		
-R8 IID -	-18R IIID]	180R IIID -	-1k8 IIIU -		
2R2IIU] -	22R ${ }^{\text {IIID }}$	220R IIID	2k2IIID -		
2R7 IID] -	27R1\|	270R IIII]	2k7 IIID -		
-3R3 ${ }^{\text {a }}$ -	33R ID]	330R IIT]	-3k3 ${ }^{\text {a }}$		
-3R9 IILIT	39R III]	-390R IILI	-3k9 IIIU -		
4 R [IITM -	47RIID]-	-470RIIIT -	-4k7IIID		
5R6 IDU]	56R III]	560R III -	5k6 IIID		
6R8 IITM -	68R \|l]	680R IIID -	6k8 IIID -	
8R2 IIT -	82R IIID -	820R IIIT]-	8k2 1115		
10k III]	100k IIIT	190\|	l		10m IIIT
12k IIIT]	120k IIII)	1m2IID]	$22 \mathrm{MIID]}$		
45k IHID	150k IIIIT	195 IHID			
-18k IIIT]	180k IIIT]	1m8 IIIIT -	OR1 II		
22k IIIT	220 k IIIX -	2 m 2 IIID -	R22IIT)		
27k IHIT	270k IIIT]	2 M 7 IHID	-0R0 I		
33k Inlu]	330k IIIT] -	-33 ${ }^{\text {alll }}$	zero ohm (link)		
-39k IIIT] -	390k IIIT -	-3991\|ll -			
47kIIIT] -	470k\|IIT]-	4M7]IILI -			
-56k III]	560k IIIT-	596 IIID]			
68k IIIT]	680k IIII]	6m8 IIIT -			
${ }^{82 k}$ IIID]	820k IIIT -	8 m 2 IIID			

Resistor Color Code System

See 101-200 Circuits for resistors in parallel and series and capacitors in parallel and series. You can make ANY VALUE by simply connecting resistors in parallel or series. And the same with capacitors.

[^0]: more complex than you think!!

