
© Gooligum Electronics 2008 www.gooligum.com.au

Baseline PIC Assembler, Lesson 3: Introducing Modular Code Page 1

Introduction to PIC Programming

Baseline Architecture and Assembly Language

by David Meiklejohn, Gooligum Electronics

Lesson 3: Introducing Modular Code

Lesson 2 introduced delay loops, which we used in flashing an LED.

Delay loops are an example of useful code that could be re-used in other applications; you don‟t want to have

to re-invent the wheel (or delay loop!) every time. Or, in a larger application, you may need to use delays in

several parts of the program. It would be wasteful to have to include multiple copies of the same code in the

one program. And if you wanted to make a change to your delay code, it would be not only more

convenient, but less likely to introduce errors, if you only have to change it in one place.

Code that is made up of pieces that can be easily re-used, either within the same program, or in other

programs, is called modular. You‟ll save yourself a lot of time if you learn to write re-usable, modular code,

which is why it‟s being covered in such an early lesson.

In this lesson, we will learn about:

 Subroutines

 Relocatable code and modules

 Banking and paging

The Circuit

The development environment and circuit for this is identical to that in lessons 1 and 2.

For reference, here is the circuit again:

Refer back to lesson 1 to see how to build it by either soldering

a resistor, LED (and optional isolating jumper) to the demo

board, or by making connections on the demo board‟s 14-pin

header.

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_2.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_1.pdf

© Gooligum Electronics 2008 www.gooligum.com.au

Baseline PIC Assembler, Lesson 3: Introducing Modular Code Page 2

Subroutines

Here again is the main code from lesson 2:

start

 movlw b'111101' ; configure GP1 (only) as an output

 tris GPIO

 clrf sGPIO ; start with shadow GPIO zeroed

flash

 movf sGPIO,w ; get shadow copy of GPIO

 xorlw b'000010' ; flip bit corresponding to GP1 (bit 1)

 movwf GPIO ; write to GPIO

 movwf sGPIO ; and update shadow copy

 ; delay 500 ms

 movlw .244 ; outer loop: 244 x (1023 + 1023 + 3) + 2

 movwf dc2 ; = 499,958 cycles

 clrf dc1 ; inner loop: 256 x 4 - 1

dly1 nop ; inner loop 1 = 1023 cycles

 decfsz dc1,f

 goto dly1

dly2 nop ; inner loop 2 = 1023 cycles

 decfsz dc1,f

 goto dly2

 decfsz dc2,f

 goto dly1

 goto flash ; repeat forever

 END

Suppose that you wanted to include another 500 ms delay in another part of the program. To place the delay

code inline, as it is above, would mean repeating all 11 lines of the delay routine somewhere else. And you

have to be very careful when copying and pasting code – you can‟t refer to the labels „dly1‟ or „dly2‟ in

the copied code, or else it will jump back to the original delay routine – probably not the intended effect!

The usual way to use the same code in a number of places in a program is to place it into a subroutine. The

main code loop would then look like this:

flash

 movf sGPIO,w ; get shadow copy of GPIO

 xorlw b'000010' ; flip bit corresponding to GP1 (bit 1)

 movwf GPIO ; write to GPIO

 movwf sGPIO ; and update shadow copy

 call delay500 ; delay 500ms

 goto flash ; repeat forever

The „call‟ instruction – “call subroutine” – is similar to „goto‟, in that it jumps to another program

address. But first, it copies (or pushes) the address of the next instruction onto the stack. The stack is a set

of registers, used to hold the return addresses of subroutines. When a subroutine is finished, the return

address is copied (popped) from the stack to the program counter, and program execution continues with the

instruction following the subroutine call.

The baseline PICs only have two stack registers, so a maximum of two return addresses can be stored. This

means that you can call a subroutine from within another subroutine, but you can‟t nest the subroutine calls

any deeper than that. But for the sort of programs you‟ll want to write on a baseline PIC, you‟ll find this

isn‟t a problem. If it is, then it‟s time to move up to a midrange PIC, or a PIC18…

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_2.pdf

© Gooligum Electronics 2008 www.gooligum.com.au

Baseline PIC Assembler, Lesson 3: Introducing Modular Code Page 3

The instruction to return from a subroutine is „retlw‟ – “return with literal in W”. This instruction places

a literal value in the W register, and then pops the return address from the stack, to return execution to the

calling code.

Note that the baseline PICs do not have a simple „return‟ instruction, only „retlw‟; you can‟t avoid

returning a literal in W. If you need to preserve the value in W when a subroutine is called, you must first

save it in another register.

Here is the 500 ms delay routine, written as a subroutine:

delay500 ; delay 500ms

 movlw .244 ; outer loop: 244x(1023+1023+3)-1+3+4

 movwf dc2 ; = 499,962 cycles

 clrf dc1

dly1 nop ; inner loop 1 = 256x4-1 = 1023 cycles

 decfsz dc1,f

 goto dly1

dly2 nop ; inner loop 2 = 1023 cycles

 decfsz dc1,f

 goto dly2

 decfsz dc2,f

 goto dly1

 retlw 0

Note that this code returns a „0‟ in W. It doesn‟t have to be „0‟; any number would do, but it‟s conventional

to return a „0‟ if you‟re not returning some specific value.

Parameter Passing with W

A re-usable 500 ms delay routine is all very well, but it‟s only useful if you need a delay of 500 ms. What if

you want a 200 ms delay – write another routine? Have multiple delay subroutines, one for each delay

length? It‟s more useful to have a single routine that can provide a range of delays. The requested delay

time would be passed as a parameter to the delay subroutine.

If you had a number of parameters to pass (for example, a „multiply‟ subroutine would have to be given the

two numbers to multiply), you‟d need to place the parameters in general purpose registers, accessed by both

the calling program and the subroutine. But if there is only one parameter to pass, it‟s often convenient to

simply place it in W.

For example, in the delay routine above, we could simply remove the „movlw .244‟ line, and instead pass

this number (244) as a parameter:

 movlw .244

 call delay ; delay 244x2.049ms = 500ms

But passing a value of „244‟ to specify a delay of 500 ms is a little obscure. It would be better if the delay

subroutine worked in multiples of an easier-to-use duration than 2.049 ms.

Ideally, we‟d pass the number of milliseconds wanted, directly, i.e. pass a parameter of „500‟ for a 500 ms

delay. But that won‟t work. The baseline PICs are 8-bit devices; the largest value you can pass in any single

register, including W, is 255.

If the delay routine produces a delay which is some multiple of 10 ms, it could be used for any delay from 10

ms to 2.55 s, which is quite useful – you‟ll find that you commonly want delays in this range.

To implement a W × 10 ms delay, we need an inner set of loops which create a 10 ms (or close enough)

delay, and an outer loop which counts the specified number of those 10 ms loops.

© Gooligum Electronics 2008 www.gooligum.com.au

Baseline PIC Assembler, Lesson 3: Introducing Modular Code Page 4

To count multiples of 10 ms, we need to add a third loop counter, as in the following code:

delay10 ; delay W x 10ms

 movwf dc3 ; delay = 1+Wx(3+10009+3)-1+4 -> Wx10.015ms

dly2 movlw .13 ; repeat inner loop 13 times

 movwf dc2 ; -> 13x(767+3)-1 = 10009 cycles

 clrf dc1 ; inner loop = 256x3-1 = 767 cycles

dly1 decfsz dc1,f

 goto dly1

 decfsz dc2,f ; end middle loop

 goto dly1

 decfsz dc3,f ; end outer loop

 goto dly2

 retlw 0

 To illustrate where this is useful, suppose that, instead of the LED being on half the time (a 50% duty cycle),

we want the LED to flash briefly, for say 200 ms, once per second (a 20% duty cycle). That would require a

delay of 200 ms while the LED is on, then a delay of 800 ms while it is off.

Here is the complete program to do this, to illustrate how all the above fits together:

;**

; *

; Description: Lesson 3, example 1 *

; *

; Flashes a LED at approx 1Hz, with 20% duty cycle *

; LED continues to flash until power is removed *

; *

;**

; *

; Pin assignments: *

; GP1 - flashing LED *

; *

;**

 list p=12F509

 #include <p12F509.inc>

 ; ext reset, no code protect, no watchdog, 4Mhz int clock

 __CONFIG _MCLRE_ON & _CP_OFF & _WDT_OFF & _IntRC_OSC

;***** VARIABLE DEFINITIONS

 UDATA

dc1 res 1 ; delay loop counters

dc2 res 1

dc3 res 1

;**

RESET CODE 0x000 ; effective reset vector

 movwf OSCCAL ; update OSCCAL with factory cal value

;***** MAIN PROGRAM

;***** Initialisation

© Gooligum Electronics 2008 www.gooligum.com.au

Baseline PIC Assembler, Lesson 3: Introducing Modular Code Page 5

start

 movlw b'111101' ; configure GP1 (only) as an output

 tris GPIO

;***** Main loop

flash

 movlw b'000010' ; set bit corresponding to GP1 (bit 1)

 movwf GPIO ; write to GPIO to turn on LED

 movlw .20 ; stay on for 0.2s:

 call delay10 ; delay 20 x 10ms = 200ms

 clrf GPIO ; clear GPIO to turn off LED

 movlw .80 ; stay off for 0.8s:

 call delay10 ; delay 80 x 10ms = 800ms

 goto flash ; repeat forever

;***** Subroutines

delay10 ; delay W x 10ms

 movwf dc3 ; delay = 1+Wx(3+10009+3)-1+4 -> Wx10.015ms

dly2 movlw .13 ; repeat inner loop 13 times

 movwf dc2 ; -> 13x(767+3)-1 = 10009 cycles

 clrf dc1 ; inner loop = 256x3-1 = 767 cycles

dly1 decfsz dc1,f

 goto dly1

 decfsz dc2,f ; end middle loop

 goto dly1

 decfsz dc3,f ; end outer loop

 goto dly2

 retlw 0

 END

By using a variable delay subroutine, the main loop (starting at the label „flash‟) is much shorter and

simpler than it would otherwise be.

Note that this code does not use a shadow register. It‟s no longer necessary, because the GP1 bit is being

directly set/cleared. It‟s not being flipped; there‟s no dependency on its previous value. At no time does the

GPIO register have to be read. It‟s only being written to. So “read-modify-write” is not a consideration

here. If that‟s unclear, go back to the description in lesson 2, and think about why an „xor‟ operation on an

I/O register is different to simply writing a new value directly to the I/O register. It‟s important to

understand this point, but if you‟re ever in doubt about whether the “read-modify-write” problem may apply,

it‟s best to be safe and use a shadow register.

CALL Instruction Address Limitation

Before moving on from subroutines, it is important that you be aware of a limitation in the baseline PIC

architecture, regarding the addressing of subroutines.

At the lowest level, PIC instructions consist of bits. In the baseline PICs, the instruction words are 12 bits

wide. Some of the bits designate which instruction it is; this set of bits is called the opcode.

For example, the opcode for movlw is 1100.

The remaining bits in the 12-bit word are used to specify whatever value is associated with the instruction,

such as a literal value, a register, or an address. In the case of movlw, the opcode is only 4 bits long, leaving

the other 8 bits to hold the literal value that will be moved into W.

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_2.pdf

© Gooligum Electronics 2008 www.gooligum.com.au

Baseline PIC Assembler, Lesson 3: Introducing Modular Code Page 6

For example, the 12-bit instruction word for „movlw 1‟ is 1100 00000001 (the last 8 bits being the binary

for „1‟).

The opcode for goto is 101. That‟s only 3 bits, leaving 9 bits to specify the address to jump to. 9 bits are

enough to specify any value from 0 to 511. That‟s 512 addresses in all.

The program memory on the 12F508 is 512 words. Since the goto instruction can specify any of these 512

addresses, it is able to jump anywhere in the 12F508‟s memory.

However, the opcode for the call instruction is 1001. That‟s 4 bits, leaving only 8 bits to specify the

address of the subroutine being called.

8 bits can hold a value from 0 to 255. There‟s no problem if your subroutine is in the first 256 words of

memory. But what if it‟s at an address above 255? With only 8 bits available for the address in the call

instruction, how can you specify an address higher than 255? The answer is that, on the baseline PICs, you

can‟t.

What‟s a program memory page? Paging is discussed below, but, briefly, on the baseline PICs, program

memory is split into pages 512 words long (it‟s no coincidence that that matches the number of locations that

goto can address). The 12F508 only has 512 words of program memory, forming a single page. So for the

12F508, we can say that subroutine calls are limited to the first 256 words of program memory. It‟s possible

for a subroutine to use goto to jump to somewhere in the second 256 words of a memory on a 12F508, but

the entry point for every subroutine has to be within that first 256 words.

That can be an awkward limitation to work around; if your main code is more than 256 instructions long and

(as in the program above) you place your subroutines after the main code, you‟ll have a problem. The

MPASM assembler will warn you if you try to call a subroutine past the 256-word boundary. The only way

to fix it is to re-arrange your code.

One approach would be to place the subroutines toward the beginning of the main code section, which we

know is located at address 0x000 (the start of the first page), with a goto instruction immediately before the

subroutines, to jump around them to the start of the main program code. A problem with that approach is

that all the subroutines plus the main code may be too big to fit into a single page (i.e. more than 512 words

in total), but each code section has to fit within a single page. The solution to that is simple – place the

subroutines in the section located at 0x000 (so we know they are toward the start of a page), but put the main

code into its own code section, which the linker can place anywhere in program memory – wherever it fits.

A more significant problem is that placing all the subroutines toward the start of page doesn‟t mean that they

will all start within the first 256 addresses in the page; if the subroutines together total more than 256 words,

there could still be problems.

The solution is to use a jump table, or subroutine vectors (or long calls). The idea is that only the entry

points for each subroutine are placed at the start of a page. Each entry point consists of a „goto‟ instruction,

jumping to the main body of the subroutine, which could be anywhere in memory – preferably in another

CODE section so that the linker is free to place it wherever it fits best.

The above program could be restructured to use a subroutine vector, as follows:

RESET CODE 0x000 ; effective reset vector

 movwf OSCCAL ; update OSCCAL with factory cal value

 goto start ; jump to main code

;***** Subroutine vectors

delay10 goto delay10_R ; delay W x 10ms

In the baseline PIC architecture, subroutine calls are limited to the first 256 locations of any

program memory page.

© Gooligum Electronics 2008 www.gooligum.com.au

Baseline PIC Assembler, Lesson 3: Introducing Modular Code Page 7

;***** Main program

MAIN CODE

start ; Initialisation

 movlw b'111101' ; configure GP1 (only) as an output

 tris GPIO

;***** Main loop

flash

 movlw b'000010' ; set bit corresponding to GP1 (bit 1)

 movwf GPIO ; write to GPIO to turn on LED

 movlw .20 ; stay on for 0.2s:

 call delay10 ; delay 20 x 10ms = 200ms

 clrf GPIO ; clear GPIO to turn off LED

 movlw .80 ; stay off for 0.8s:

 call delay10 ; delay 80 x 10ms = 800ms

 goto flash ; repeat forever

;***** Subroutines

SUBS CODE

delay10_R ; delay W x 10ms

 movwf dc3 ; -> 1+Wx(3+10009+3)-1+4 = Wx10.015ms

dly2 movlw .13 ; repeat inner loop 13 times

 movwf dc2 ; -> 13x(767+3)-1 = 10009 cycles

 clrf dc1 ; inner loop = 256x3-1 = 767 cycles

dly1 decfsz dc1,f

 goto dly1

 decfsz dc2,f ; end middle loop

 goto dly1

 decfsz dc3,f ; end outer loop

 goto dly2

 retlw 0

Dividing the program into so many CODE sections is of course overkill for such a small program, but if you

adopt this approach you will avoid problems as your programs grow larger.

The entry point for the „delay10‟ subroutine is guaranteed to be within the first 256 words of the program

memory page, while the subroutine proper, renamed to „delay10_R‟ (R for routine) is in a separate code

section which could be anywhere in memory – perhaps on a separate page. And therein lies a problem; as

written, this code is not guaranteed to work. The following section explains why.

Paging

As discussed above, the goto instruction word only has 9 bits to specify the program location to jump to;

enough to address up to a single page of 512 program words

That‟s fine for the 12F508, which only has 512 words of program memory, but it‟s a problem for a device

such as the 12F509, with 1024 words.

The solution is to use a bit in the STATUS register, PA0, to select which page is to be accessed:

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

STATUS GPWUF - PA0 TO PD Z DC C

The program counter (PC) holds the full 12-bit address of the next instruction to be executed. Whenever a

goto instruction is executed, the lower 9 bits of the program counter (PC<8:0>) are taken from the goto

instruction word, but the 10
th
 bit (PC<9>) is provided by the current value to PA0.

© Gooligum Electronics 2008 www.gooligum.com.au

Baseline PIC Assembler, Lesson 3: Introducing Modular Code Page 8

This is also true for the call instruction, except that, as explained earlier, only the lower 8 bits of the

program counter come from the call instruction word, and PC<8> is always set to 0.

(In fact, this is true for any instruction which modifies the program counter; a point we will come back to

when we cover lookup tables in lesson 8.)

Therefore, to goto or call an address in the first 512 words of program memory (page 0), you must first

clear PA0. To access a routine in page 1, you must first set PA0 to „1‟.

If you don‟t update PA0, but then try to goto or call an address in a different page, you will instead jump

the corresponding address in the current page – not the location you were trying to access, and your program

will almost certainly fail.

For baseline devices with 2048 words of program memory, such as the 16F59, this paging scheme is

extended, with bit 6 of the STATUS register, referred to as PA1, providing PC<10>. Given two page

selection bits (PA0 and PA1), up to four 512-word pages can be selected, allowing a total of 2048 words.

Using the PAGESEL directive

If your program includes multiple code sections, you can‟t know beforehand where the linker will place them

in memory, so you can‟t know how to set the page selection bits when jumping to locations in other sections.

The solution is to use the „pagesel‟ directive, which instructs the assembler and linker to generate code to

select the correct page for the given program address.

To ensure that the program above will work correctly, regardless of which pages the main code and

subroutines are on, pagesel directives should be added to the start-up and subroutine vector code, as

follows:

RESET CODE 0x000 ; effective reset vector

 movwf OSCCAL ; update OSCCAL with factory cal value

 pagesel start

 goto start ; jump to main code

;***** Subroutine vectors

delay10 ; delay W x 10ms

 pagesel delay10_R

 goto delay10_R

And, then, since the delay10 subroutine entry point may be in a different page from the main code,

pagesel directives should be added to the main loop, as follows:

flash

 movlw b'000010' ; set bit corresponding to GP1 (bit 1)

 movwf GPIO ; write to GPIO to turn on LED

 movlw .20 ; stay on for 0.2s:

 pagesel delay10

 call delay10 ; delay 20 x 10ms = 200ms

 clrf GPIO ; clear GPIO to turn off LED

 movlw .80 ; stay off for 0.8s:

 call delay10 ; delay 80 x 10ms = 800ms

 pagesel flash

 goto flash ; repeat forever

Note that there is no „pagesel‟ before the second call to „delay10‟. It‟s unnecessary, because the first

„pagesel‟ has already set the page selection bits for calls to „delay10‟. If you‟re going to successively

call subroutines in a single section, there is no need to add a „pagesel‟ for each; the first is enough.

Finally, note the „pagesel‟ before the „goto‟ at the end of the loop. This is necessary because, at that

point, the page selection bits will still be set for whatever page the „delay10‟ entry point is on, not

necessarily the current page.

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_8.pdf

© Gooligum Electronics 2008 www.gooligum.com.au

Baseline PIC Assembler, Lesson 3: Introducing Modular Code Page 9

An alternative is to place a „pagesel $‟ directive (“select page for current address”) after each call

instruction, to ensure that the current page is selected after returning from a subroutine.

You do not, however, need to use pagesel before every goto or call, or after every call. Remember

that, provided you use the default linker scripts, a single code section is guaranteed to be wholly contained

within a single page. So, once you know that you‟ve selected the correct page, subsequent gotos or calls

to the same section will work correctly. But be careful!

If in doubt, using pagesel before every goto and call is a safe approach that will always work.

Banking

A limitation, similar to that for program memory access, also exists with data memory.

As discussed earlier, the opcodes encoding the PIC instructions use a limited number of bits, as part of the

instruction word, to represent a register in data memory or a program memory address. In the baseline

architecture, only 5 bits are allocated to register addressing. That‟s enough to allow up to 32 registers to be

directly addressed, corresponding to the size of a register bank: 32 registers.

The PIC12F508 has 7 special function registers and 25 general purpose registers; 32 registers in total. They

are arranged as a single bank, as described in lesson 1.

The 12F509 has 41 general

purpose registers, in addition to

the 7 special function registers;

48 in total. That‟s too many to

fit into a single bank.

To allow these additional

registers to be addressed, they

are arranged into two banks, as

shown at the left.

The bank to be accessed is

selected by bit 5 in the FSR

register (FSR<5>). If it is

cleared to „0‟, bank 0 is selected,

and any instructions which

reference a register will address

a register in bank 0. If FSR<5>

is set to „1‟, bank 1 is selected,

and subsequent instructions will

reference registers in bank 1.

The special function registers

appear in both banks.

Regardless of which bank is

selected, you can refer directly

to any special function register,

such as GPIO. That‟s not true

in the midrange devices, where you have to be very careful to select the correct bank before accessing special

function registers. But on the baseline PICs, you don‟t have to worry about banking when working with

special function registers.

The first set of 9 general purpose registers (07h – 0Fh) are mapped into both banks. Whichever bank is

selected, these same registers will be addressed. Registers like this, which appear at the same location across

all banks, are referred to as shared. They are very useful for storing data or variables which you want to

access often, regardless of which bank is selected, without having to include bank selection instructions. If

you address a register as 07h or 27h, it will contain the same data; it‟s the same physical register.

PIC12F509 Registers

Address Bank 0 Address Bank 1

00h INDF 20h INDF

01h TMR0 21h TMR0

02h PCL 22h PCL

03h STATUS 23h STATUS

04h FSR 24h FSR

05h OSCCAL 25h OSCCAL

06h GPIO 26h GPIO

07h

General

Purpose

Registers

27h

Map to Bank 0

07h – 0Fh

0Fh 2Fh

10h

General

Purpose

Registers

30h

General

Purpose

Registers

1Fh 3Fh

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_1.pdf

© Gooligum Electronics 2008 www.gooligum.com.au

Baseline PIC Assembler, Lesson 3: Introducing Modular Code Page 10

The next 16 general purpose registers (10h – 1Fh) are accessed through bank 0 only. If you set FSR<5> to

select bank 1, you‟ll access an entirely separate set of 16 general purpose registers (30h – 3Fh).

Note that, when referring to numeric register addresses, FSR<5> is considered to be bit 5 of the register

address (bits 0 to 4 of the address coming from the instruction word).

So the 12F509 has 9 shared general purpose registers, and 32 banked general purpose registers (16 in each of

two banks), for a total of 41 bytes of data memory.

Taking this banking scheme further, the 16F505 has 72 bytes of data memory, arranged into four banks: 8

shared registers and 64 banked registers (16 in each bank). As for the other baseline devices, the special

function registers are mapped into each bank.

The four data banks in the 16F505 are selected by bits 5 and 6 of the FSR register (FSR<6:5>): „00‟ selects

bank 0, „01‟ for bank 1, „10‟ for bank 2, and „11‟ selects bank 3.

Similarly, the 16F59 has 134 general purpose registers: 6 shared and 16 in each of 8 banks. To specify

which of the eight banks is selected, three bits are needed: FSR<7:5>. Since FSR has no 8
th
 bit, this

scheme can‟t be extended any further, so eight is the maximum number of data banks possible in the

midrange architecture.

Using the BANKSEL directive

Typically, when you use the UDATA and RES directives to declare and allocate space in a section of data

memory, you don‟t specify an address, allowing the linker to locate the section anywhere in data memory,

fitting it around other sections. The potential problem with this is that “anywhere in data memory” also

means “in any bank”.

When you refer to registers allocated within relocatable data sections, you can‟t know what bank they will be

in, so you can‟t know how to set the bank selection bits in FSR.

The solution is similar to that for paging: use the banksel directive to instruct the assembler and linker to

generate appropriate code to select the correct bank for the given variable (or data address label).

To ensure that the „delay10‟ routine accesses the register bank containing the delay loop counter variables, a

banksel directive should be added, as follows:

delay10_R ; delay W x 10ms

 banksel dc3 ; -> ?+1+Wx(3+10009+3)-1+4 = Wx10.015ms

 movwf dc3

dly2 movlw .13 ; repeat inner loop 13 times

 movwf dc2 ; -> 13x(767+3)-1 = 10009 cycles

 clrf dc1 ; inner loop = 256x3-1 = 767 cycles

dly1 decfsz dc1,f

 goto dly1

 decfsz dc2,f ; end middle loop

 goto dly1

 decfsz dc3,f ; end outer loop

 goto dly2

 retlw 0

banksel is used the first time a group of variables is accessed, but not subsequently – unless another bank

has been selected (for example, after calling a subroutine which may have selected a different bank).

We know that all three variables will be in the same bank, since they are all declared as part of the same data

section. As long as you use the default, Microchip-supplied, linker scripts, that‟s guaranteed. If you select

the bank for one variable in a data section, then it will also be the correct bank for every other variable in that

section, so we only need to use banksel once. You only need another banksel if you‟re going to access

a variable in a different data section.

© Gooligum Electronics 2008 www.gooligum.com.au

Baseline PIC Assembler, Lesson 3: Introducing Modular Code Page 11

Note that the code could have been started with „banksel dc1‟, instead of „banksel dc3‟; it would

make no difference, because dc1 and dc3 are in the same section and therefore the same bank. But it seems

clearer, and more maintainable, to have banksel refer to the variable you‟re about to access, and to place it

immediately before that access.

Declaring a Shared Data Section

As discussed above, not all data memory is banked. The special function registers and some of the general

purpose registers are mapped into every bank. These shared registers are useful for storing variables that are

used throughout a program, without having to worry about setting bank selection bits to access them.

The UDATA_SHR directive is used to declare a section of shared data memory.

It‟s used in the same way as UDATA; the only difference is that registers reserved in a UDATA_SHR section

won‟t be banked.

Since there is less shared memory available than banked memory, it should be used sparingly. However, it

can make sense to allocate shadow registers in shared memory, as they are likely to be used often.

To summarise:

 The first time you access a variable declared in a UDATA section, use banksel.

 To access subsequent variables in the same UDATA section, you don‟t need to use banksel.

(unless you had selected another bank between variable accesses)

 Following a call to a subroutine or external module (see below), which may have selected a different

bank, use banksel for the first variable accessed after the call.

 To access variables in a UDATA_SHR section, there is never any need to use banksel.

Relocatable Modules

If you wanted to take a subroutine you had written as part of one program, and re-use it in another, you could

simply copy and paste the source code into the new program.

There are a few potential problems with this approach:

 Address labels, such as „dly1‟, may already be in use in the new program, or in other pieces of code

that you‟re copying.

 You need to know which variables are needed by the subroutine, and remember to copy their

definitions to the new program.

 Variable names have the same problem as address labels – they may already be used in new

program, in which case you‟d need to identify and rename all references to them.

These problems can be avoided by keeping the subroutine code in a separate source file, where it is

assembled into an object file, called an object module. The main code is assembled into a separate object

file. These object files – one for the main code, plus one for each module, are then linked together to create

the final executable code, which is output as a .hex file to be programmed into the PIC. This assembly/link

(or build) process sounds complicated, but MPLAB takes care of the details, as we‟ll see.

© Gooligum Electronics 2008 www.gooligum.com.au

Baseline PIC Assembler, Lesson 3: Introducing Modular Code Page 12

Creating a multiple-file project

Let‟s set up a project with the following files:

 delay10.asm - containing the W × 10 ms delay routine

 L3-Flash_LED-main.asm - the main code (calling the delay routine)

These can be based on parts of the programs developed above.

To create the multiple-file project, open an existing project and then save it with a new name, such as “L3-

Flash_LED-mod”, in the same way as you did when creating new project in lesson 2.

Open the assembler source containing the main loop and the „delay10‟ subroutine (e.g. from example 1,

above) and save it, using “File  Save As…” as “delay10.asm”.

Next close the editor window and run the project wizard as before, to reconfigure the active project.

When you reach “Step Four: Add existing files to your project” window, rename the source file to “L3-

Flash_LED-main”, in the same way as was done in lesson 2 (changing the “U” next to the filename to “C”).

Now find the “delay10.asm” file you saved before in the left hand pane, and click on “Add>>” to add it to

your project. The filename is already correct, but you should click on the “A” next to the filename to change

it to a “U” to indicate that this is a user file, as shown:

© Gooligum Electronics 2008 www.gooligum.com.au

Baseline PIC Assembler, Lesson 3: Introducing Modular Code Page 13

After clicking on “Next >” and then “Finish”, you will see that your project now contains both source files:

Of course there are a number of ways to create a multiple-file project.

If you simply want to add an

existing file (or files) to a

project, you can right-click on

“Source Files” in the project

window, then select “Add Files”

from the context menu, or else

select the “Project  Add Files

to Project…” menu item. Either

way, you will be presented with

the window shown on the right.

As you can see, it gives you the

option, for each file, to specify

whether it is a user (relative

path) or system (absolute path)

file.

Or if you want to create a new

file from scratch, instead of

using an existing one, use the

“Project  Add New File to

Project…” menu item (also

available under the File menu).

You‟ll be presented with a blank

editor window, into which you

can copy text from other files (or

simply start typing!).

However you created them, now that you have a project which includes the two source files, we can consider

their content…

© Gooligum Electronics 2008 www.gooligum.com.au

Baseline PIC Assembler, Lesson 3: Introducing Modular Code Page 14

Creating a Relocatable Module

Converting an existing subroutine, such as our „delay10‟ routine, into a standalone, relocatable module is

easy. All you need to do is to declare any symbols (address labels or variables) that need to be accessible

from other modules, using the GLOBAL directive.

For example:

 #include <p12F509.inc> ; any baseline device will do

 GLOBAL delay10_R

;***** VARIABLE DEFINITIONS

 UDATA

dc1 res 1 ; delay loop counters

dc2 res 1

dc3 res 1

;**

 CODE

delay10_R ; delay W x 10ms

 banksel dc3 ; -> ?+1+Wx(3+10009+3)-1+4 = Wx10.015ms

 movwf dc3

dly2 movlw .13 ; repeat inner loop 13 times

 movwf dc2 ; -> 13x(767+3)-1 = 10009 cycles

 clrf dc1 ; inner loop = 256x3-1 = 767 cycles

dly1 decfsz dc1,f

 goto dly1

 decfsz dc2,f ; end middle loop

 goto dly1

 decfsz dc3,f ; end outer loop

 goto dly2

 retlw 0

 END

This is the subroutine from the earlier example, with a CODE directive at the beginning of it, and the UDATA

directive to reserve the data memory it needs. And toward the start, a GLOBAL directive has been added,

declaring that the „delay10_R‟ label is to be made available (exported) to other modules, so that they can call

this subroutine.

You should also include (pardon the pun) a „#include‟ directive, to define any “standard” symbols used in

the code, such as the instruction destinations „w‟ and „f‟. This delay routine will work on any baseline PIC;

it‟s not specific to any, so you can use the include file for any of the baseline PICs, such as the 12F509. Note

that there is no list directive; this avoids the processor mismatch errors that would be reported if you

specify more than one processor in the modules comprising a single project.

Of course it‟s also important to add a block of comments at the start; they should describe what this module

is for, how it is used, any effects it has (including side effects, such as returning „0‟ in the W register), and

any assumptions that have been made. In this case, it is assumed that the processor is clocked at exactly 4

MHz.

© Gooligum Electronics 2008 www.gooligum.com.au

Baseline PIC Assembler, Lesson 3: Introducing Modular Code Page 15

Calling Relocatable Modules

Having created an external relocatable module (i.e. one in a separate file), we need to declare, in the main (or

calling) file any labels we want to use from the module being called , so that the linker knows that these

labels are defined in another module. That‟s done with the EXTERN directive.

For example:

 list p=12F509

 #include <p12F509.inc>

 EXTERN delay10_R ; W x 10ms delay

;***** CONFIGURATION

 ; ext reset, no code protect, no watchdog, 4Mhz int clock

 __CONFIG _MCLRE_ON & _CP_OFF & _WDT_OFF & _IntRC_OSC

;***** VARIABLE DEFINITIONS

 UDATA_SHR

sGPIO res 1 ; shadow copy of GPIO

;**

RESET CODE 0x000 ; effective reset vector

 movwf OSCCAL ; update OSCCAL with factory cal value

 pagesel start

 goto start ; jump to main code

;***** Subroutine vectors

delay10 ; delay W x 10ms

 pagesel delay10_R

 goto delay10_R

;***** MAIN PROGRAM

MAIN CODE

;***** Initialisation

start

 movlw b'111101' ; configure GP1 (only) as an output

 tris GPIO

 clrf sGPIO ; start with shadow GPIO zeroed

;***** Main loop

flash

 movf sGPIO,w ; get shadow copy of GPIO

 xorlw b'000010' ; flip bit corresponding to GP1 (bit 1)

 movwf GPIO ; write to GPIO

 movwf sGPIO ; and update shadow copy

 movlw .50

 pagesel delay10

 call delay10 ; delay 500ms -> 1Hz at 50% duty cycle

 pagesel flash

 goto flash ; repeat forever

 END

© Gooligum Electronics 2008 www.gooligum.com.au

Baseline PIC Assembler, Lesson 3: Introducing Modular Code Page 16

This is the main loop from the “Flash an LED” program from lesson 2, with the inline delay routine replaced

with a call to the “delay10” routine, and the variables used by the delay routine removed. And toward the

start of the program, an EXTERN directive has been added, to declare that the „delay10_R‟ label is a

reference to another module. Note that a subroutine vector is still used, as it is not possible to know where in

program memory the linker will place the subroutine.

Also note that the shadow register is declared as a shared variable in a UDATA_SHR segment, so there is no

need to use banksel before accessing it.

To summarise:

 The GLOBAL and EXTERN directives work as a pair.

 GLOBAL is used in the file that defines a module, to export a symbol for use by other modules.

 EXTERN is used when calling external modules. It declares that a symbol has been defined

elsewhere.

Complete programs

Here are the modular delay and main flash routines, illustrating the use of external modules, banked and

shared registers and page selection:

delay10.asm

;**

; *

; Filename: delay10.asm *

; Date: 22/9/07 *

; File Version: 1.1 *

; *

; Author: David Meiklejohn *

; Company: Gooligum Electronics *

; *

;**

; *

; Architecture: Baseline PIC *

; Processor: any *

; *

;**

; *

; Files required: none *

; *

;**

; *

; Description: Variable Delay : N x 10ms (10ms - 2.55s) *

; *

; N passed as parameter in W reg *

; exact delay = W x 10.015ms *

; *

; Returns: W = 0 *

; Assumes: 4MHz clock *

; *

;**

 #include <p12F509.inc> ; any baseline device will do

 GLOBAL delay10_R

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_2.pdf

© Gooligum Electronics 2008 www.gooligum.com.au

Baseline PIC Assembler, Lesson 3: Introducing Modular Code Page 17

;***** VARIABLE DEFINITIONS

 UDATA

dc1 res 1 ; delay loop counters

dc2 res 1

dc3 res 1

;**

 CODE

delay10_R ; delay W x 10ms

 banksel dc3 ; -> ?+1+Wx(3+10009+3)-1+4 = Wx10.015ms

 movwf dc3

dly2 movlw .13 ; repeat inner loop 13 times

 movwf dc2 ; -> 13x(767+3)-1 = 10009 cycles

 clrf dc1 ; inner loop = 256x3-1 = 767 cycles

dly1 decfsz dc1,f

 goto dly1

 decfsz dc2,f ; end middle loop

 goto dly1

 decfsz dc3,f ; end outer loop

 goto dly2

 retlw 0

 END

L3-Flash_LED-main.asm

;**

; Filename: L3-Flash_LED-main.asm *

; Date: 22/9/07 *

; File Version: 1.1 *

; *

; Author: David Meiklejohn *

; Company: Gooligum Electronics *

; *

;**

; Architecture: Baseline PIC *

; Processor: 12F508/509 *

; *

;**

; *

; Files required: delay10.asm (provides W x 10ms delay) *

; *

;**

; *

; Description: Lesson 3, example 3 *

; *

; Demonstrates how to call external modules *

; *

; Flashes a LED at approx 1Hz. *

; LED continues to flash until power is removed. *

; *

;**

; *

; Pin assignments: *

; GP1 - flashing LED *

; *

;**

© Gooligum Electronics 2008 www.gooligum.com.au

Baseline PIC Assembler, Lesson 3: Introducing Modular Code Page 18

 list p=12F509

 #include <p12F509.inc>

 EXTERN delay10_R ; W x 10ms delay

;***** CONFIGURATION

 ; ext reset, no code protect, no watchdog, 4Mhz int clock

 __CONFIG _MCLRE_ON & _CP_OFF & _WDT_OFF & _IntRC_OSC

;***** VARIABLE DEFINITIONS

 UDATA_SHR

sGPIO res 1 ; shadow copy of GPIO

;**

RESET CODE 0x000 ; effective reset vector

 movwf OSCCAL ; update OSCCAL with factory cal value

 pagesel start

 goto start ; jump to main code

;***** Subroutine vectors

delay10 ; delay W x 10ms

 pagesel delay10_R

 goto delay10_R

;***** MAIN PROGRAM

MAIN CODE

;***** Initialisation

start

 movlw b'111101' ; configure GP1 (only) as an output

 tris GPIO

 clrf sGPIO ; start with shadow GPIO zeroed

;***** Main loop

flash

 movf sGPIO,w ; get shadow copy of GPIO

 xorlw b'000010' ; flip bit corresponding to GP1 (bit 1)

 movwf GPIO ; write to GPIO

 movwf sGPIO ; and update shadow copy

 movlw .50

 pagesel delay10

 call delay10 ; delay 500ms -> 1Hz at 50% duty cycle

 pagesel flash

 goto flash ; repeat forever

 END

© Gooligum Electronics 2008 www.gooligum.com.au

Baseline PIC Assembler, Lesson 3: Introducing Modular Code Page 19

The Build Process (Revisited)

In a multiple-file project, when you select the “Project  Build All” menu item, or click on

the “Build All” toolbar icon, the assembler will assemble all the source files, producing a

new „.o‟ object file for each. The linker then combines these „.o‟ files to build a single

„.hex‟ file, containing an image of the executable code to be programmed into the PIC.

If, however, you‟ve been developing a multi-file project, and you‟ve already built it, and then go back and

alter just one of the source files, there‟s no need to re-assemble all the other source files, if they haven‟t

changed. The object files corresponding to those unchanged source files will still be there, and they‟ll still

be valid.

That‟s what the “Project  Make” menu item (and the “Make” toolbar icon) does, as was

discussed briefly in lesson 1. Like “Build All”, it builds your project, but it only assembles

source files which have a newer date stamp than the corresponding object file. This is what you

normally want, to save unnecessary assembly time (not that it makes much difference with such

a small project!), so MPLAB includes a handy shortcut for “Make” – just press „F10‟.

After you build (or make) the project, you‟ll see a number of new files in the project directory. In addition to

your „.asm‟ source files and the „.o‟ object files and the „.hex‟ output file we‟ve already discussed, you‟ll

find a „.lst‟ file corresponding to each of the source files, and „.lst‟ and „.map‟ files corresponding to the

project name.

I won‟t describe these in detail, but they are worth looking at if you are curious about the build process. And

they can be valuable to refer to if you when debugging, as they show exactly what the assembler and linker

are doing.

The „.lst‟ list files show the output of the assembler; you can see the opcodes corresponding to each

instruction. They also show the value of every label. But you‟ll see that, for the list files belonging to the

source files (e.g. „delay10.lst‟), they contain a large number of question marks. For example:

0000 00047 delay10_R ; delay W x 10ms

0000 ???? ???? 00048 banksel dc3 ; -> ?+1+Wx(3+10009+3)-1+4 = Wx10.015ms

0002 00?? 00049 movwf dc3

0003 0C0D 00050 dly2 movlw .13 ; repeat inner loop 13 times

0004 00?? 00051 movwf dc2 ; -> 13x(767+3)-1 = 10009 cycles

0005 00?? 00052 clrf dc1 ; inner loop = 256x3-1 = 767 cycles

0006 02?? 00053 dly1 decfsz dc1,f

0007 0A?? 00054 goto dly1

0008 02?? 00055 decfsz dc2,f ; end middle loop

0009 0A?? 00056 goto dly1

000A 02?? 00057 decfsz dc3,f ; end outer loop

000B 0A?? 00058 goto dly2

 00059

000C 0800 00060 retlw 0

The banksel directive is completely undefined at this point; even the instruction hasn‟t been decided, so

it‟s shown as „???? ????‟. It can‟t be defined, because the location of „dc3‟ is unknown.

Similarly, many of the instruction opcodes are only partially complete. The question marks can‟t be filled in,

until the location of all the data and program labels is known.

Assigning locations to the various objects is the linker‟s job, and you can see the choices it has made by

looking at the „.map‟ map file. It shows where each section will be placed, and what the final data and

program addresses are. For example:

 Section Info

 Section Type Address Location Size(Bytes)

 --------- --------- --------- --------- ---------

 RESET code 0x000000 program 0x00000a

 .cinit romdata 0x000005 program 0x000004

© Gooligum Electronics 2008 www.gooligum.com.au

Baseline PIC Assembler, Lesson 3: Introducing Modular Code Page 20

 .code code 0x000007 program 0x00001a

 MAIN code 0x000014 program 0x000018

 RCCAL code 0x0003ff program 0x000002

 .config code 0x000fff program 0x000002

 .udata_shr udata 0x000007 data 0x000001

 .udata udata 0x000010 data 0x000003

 Program Memory Usage

 Start End

 --------- ---------

 0x000000 0x00001f

 0x0003ff 0x0003ff

 0x000fff 0x000fff

 34 out of 1029 program addresses used, program memory utilization is 3%

 Symbols - Sorted by Name

 Name Address Location Storage File

 --------- --------- --------- --------- ---------

 delay10 0x000003 program static C:\...\L3-Flash_LED-main.asm

 delay10_R 0x000007 program extern C:\...\delay10.asm

 dly1 0x00000d program static C:\...\delay10.asm

These addresses are then reflected in the project „.lst‟ file, which shows the final assembled code, with all the

actual instruction opcodes, with fully resolved addresses, that will be loaded into the PIC.

Including Object Files

When a module has been assembled, it‟s not necessary to have

the source code to be able to use that module in a project.

Instead you can include the object file directly.

To see how that is done, right-click on „delay10.asm‟ in the

workspace window, then select “Remove” to remove it from the

project.

Then right-click on “Object Files” and select “Add Files…”.

This will open a dialog box where you can select the „delay10.o‟

file and add it to your project. You should end up with a

workspace window similar to that shown at right, with one

source file and one object file included in the project.

If you now do a “Build All”, only the „Flash_main.asm‟ source

file will be assembled. The „delay10.o‟ object file is used as-is.

However, object modules are less flexible than source modules

because an object file is only valid for the specific processor that

it was built for. You couldn‟t for example link the „delay10.o‟ file assembled for the PIC12F509 into a

project being built for another processor, such as the PIC16F505. You‟d have to include the assembler

source file („delay10.asm‟) instead.

When you have collected a number of modules for various functions, you can use the MPLIB librarian

program to build a library, containing the object code for these modules. You can then include the library in

your project, instead of the individual object file. That can be very useful when you have a suite of related

modules, such as floating point maths functions. The linker will only include the objects that your code

references, not the whole library, so there is no penalty for using a library file. We won‟t go into any detail

Note: the processor types of all files included in a project must match.

An object file can only be linked into a project if it was assembled for the same type of

processor as the device selected for the project.

© Gooligum Electronics 2008 www.gooligum.com.au

Baseline PIC Assembler, Lesson 3: Introducing Modular Code Page 21

on building a library here, but you to be aware that they exist, in case you want to look up the details for

yourself later.

That‟s enough for now. We‟ve been flashing LEDs for a while; it‟s time to move on.

In the next lesson we‟ll look at reading and responding to switches, such as pushbuttons. And since real

switches “bounce”, and that can be a problem for microcontroller applications, we‟ll look at ways to

“debounce” them.

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_4.pdf

	Introduction to PIC Programming
	Baseline Architecture and Assembly Language
	Lesson 3: Introducing Modular Code
	The Circuit
	Subroutines
	Parameter Passing with W
	CALL Instruction Address Limitation

	Paging
	Using the PAGESEL directive

	Banking
	Using the BANKSEL directive
	Declaring a Shared Data Section

	Relocatable Modules
	Creating a multiple-file project
	Creating a Relocatable Module
	Calling Relocatable Modules
	Complete programs

	The Build Process (Revisited)
	Including Object Files

