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Introduction to PIC Programming 

Baseline Architecture and Assembly Language 

 

by David Meiklejohn, Gooligum Electronics 

 

Lesson 3: Introducing Modular Code 

 

 

Lesson 2 introduced delay loops, which we used in flashing an LED. 

Delay loops are an example of useful code that could be re-used in other applications; you don‟t want to have 

to re-invent the wheel (or delay loop!) every time.  Or, in a larger application, you may need to use delays in 

several parts of the program.  It would be wasteful to have to include multiple copies of the same code in the 

one program.  And if you wanted to make a change to your delay code, it would be not only more 

convenient, but less likely to introduce errors, if you only have to change it in one place. 

Code that is made up of pieces that can be easily re-used, either within the same program, or in other 

programs, is called modular.  You‟ll save yourself a lot of time if you learn to write re-usable, modular code, 

which is why it‟s being covered in such an early lesson. 

In this lesson, we will learn about: 

 Subroutines 

 Relocatable code and modules 

 Banking and paging 

 

The Circuit 

The development environment and circuit for this is identical to that in lessons 1 and 2. 

For reference, here is the circuit again: 

 

Refer back to lesson 1 to see how to build it by either soldering 

a resistor, LED (and optional isolating jumper) to the demo 

board, or by making connections on the demo board‟s 14-pin 

header. 

 

 

 

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_2.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_1.pdf
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Subroutines 

Here again is the main code from lesson 2: 

start  

        movlw   b'111101'       ; configure GP1 (only) as an output 

        tris    GPIO 

        clrf    sGPIO           ; start with shadow GPIO zeroed 

flash 

        movf    sGPIO,w         ; get shadow copy of GPIO 

        xorlw   b'000010'       ; flip bit corresponding to GP1 (bit 1) 

        movwf   GPIO            ; write to GPIO 

        movwf   sGPIO           ; and update shadow copy 

 

        ; delay 500 ms 

        movlw   .244            ; outer loop: 244 x (1023 + 1023 + 3) + 2 

        movwf   dc2             ;   = 499,958 cycles 

        clrf    dc1             ; inner loop: 256 x 4 - 1 

dly1    nop                     ; inner loop 1 = 1023 cycles 

        decfsz  dc1,f 

        goto    dly1 

dly2    nop                     ; inner loop 2 = 1023 cycles 

        decfsz  dc1,f 

        goto    dly2 

        decfsz  dc2,f 

        goto    dly1 

 

        goto    flash           ; repeat forever 

 

 

        END 

 

Suppose that you wanted to include another 500 ms delay in another part of the program.  To place the delay 

code inline, as it is above, would mean repeating all 11 lines of the delay routine somewhere else.  And you 

have to be very careful when copying and pasting code – you can‟t refer to the labels „dly1‟ or „dly2‟ in 

the copied code, or else it will jump back to the original delay routine – probably not the intended effect! 

The usual way to use the same code in a number of places in a program is to place it into a subroutine.  The 

main code loop would then look like this: 

flash 

        movf    sGPIO,w         ; get shadow copy of GPIO 

        xorlw   b'000010'       ; flip bit corresponding to GP1 (bit 1) 

        movwf   GPIO            ; write to GPIO 

        movwf   sGPIO           ; and update shadow copy 

        call    delay500        ; delay 500ms 

        goto    flash           ; repeat forever 

 

The „call‟ instruction – “call subroutine” – is similar to „goto‟, in that it jumps to another program 

address.  But first, it copies (or pushes) the address of the next instruction onto the stack.  The stack is a set 

of registers, used to hold the return addresses of subroutines.  When a subroutine is finished, the return 

address is copied (popped) from the stack to the program counter, and program execution continues with the 

instruction following the subroutine call. 

The baseline PICs only have two stack registers, so a maximum of two return addresses can be stored.  This 

means that you can call a subroutine from within another subroutine, but you can‟t nest the subroutine calls 

any deeper than that.  But for the sort of programs you‟ll want to write on a baseline PIC, you‟ll find this 

isn‟t a problem.  If it is, then it‟s time to move up to a midrange PIC, or a PIC18… 

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_2.pdf
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The instruction to return from a subroutine is „retlw‟ – “return with literal in W”.  This instruction places 

a literal value in the W register, and then pops the return address from the stack, to return execution to the 

calling code. 

Note that the baseline PICs do not have a simple „return‟ instruction, only „retlw‟; you can‟t avoid 

returning a literal in W.  If you need to preserve the value in W when a subroutine is called, you must first 

save it in another register. 

 

Here is the 500 ms delay routine, written as a subroutine: 

delay500                        ; delay 500ms 

        movlw   .244            ; outer loop: 244x(1023+1023+3)-1+3+4 

        movwf   dc2             ;   = 499,962 cycles 

        clrf    dc1  

dly1    nop                     ; inner loop 1 = 256x4-1 = 1023 cycles 

        decfsz  dc1,f 

        goto    dly1 

dly2    nop                     ; inner loop 2 = 1023 cycles 

        decfsz  dc1,f 

        goto    dly2 

        decfsz  dc2,f 

        goto    dly1 

 

        retlw   0 

 

Note that this code returns a „0‟ in W.  It doesn‟t have to be „0‟; any number would do, but it‟s conventional 

to return a „0‟ if you‟re not returning some specific value. 

Parameter Passing with W 

A re-usable 500 ms delay routine is all very well, but it‟s only useful if you need a delay of 500 ms.  What if 

you want a 200 ms delay – write another routine?  Have multiple delay subroutines, one for each delay 

length?  It‟s more useful to have a single routine that can provide a range of delays.  The requested delay 

time would be passed as a parameter to the delay subroutine. 

If you had a number of parameters to pass (for example, a „multiply‟ subroutine would have to be given the 

two numbers to multiply), you‟d need to place the parameters in general purpose registers, accessed by both 

the calling program and the subroutine.  But if there is only one parameter to pass, it‟s often convenient to 

simply place it in W. 

For example, in the delay routine above, we could simply remove the „movlw   .244‟ line, and instead pass 

this number (244) as a parameter: 

        movlw   .244             

        call    delay           ; delay 244x2.049ms = 500ms 

 

But passing a value of „244‟ to specify a delay of 500 ms is a little obscure.  It would be better if the delay 

subroutine worked in multiples of an easier-to-use duration than 2.049 ms. 

Ideally, we‟d pass the number of milliseconds wanted, directly, i.e. pass a parameter of „500‟ for a 500 ms 

delay.  But that won‟t work.  The baseline PICs are 8-bit devices; the largest value you can pass in any single 

register, including W, is 255. 

If the delay routine produces a delay which is some multiple of 10 ms, it could be used for any delay from 10 

ms to 2.55 s, which is quite useful – you‟ll find that you commonly want delays in this range. 

To implement a W × 10 ms delay, we need an inner set of loops which create a 10 ms (or close enough) 

delay, and an outer loop which counts the specified number of those 10 ms loops. 
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To count multiples of 10 ms, we need to add a third loop counter, as in the following code: 

delay10                         ; delay W x 10ms 

        movwf   dc3             ; delay = 1+Wx(3+10009+3)-1+4 -> Wx10.015ms 

 

dly2    movlw   .13             ; repeat inner loop 13 times 

        movwf   dc2             ; -> 13x(767+3)-1 = 10009 cycles 

                                 

        clrf    dc1             ; inner loop = 256x3-1 = 767 cycles 

dly1    decfsz  dc1,f            

        goto    dly1 

 

        decfsz  dc2,f           ; end middle loop 

        goto    dly1             

 

        decfsz  dc3,f           ; end outer loop 

        goto    dly2 

  

        retlw   0 

 

 To illustrate where this is useful, suppose that, instead of the LED being on half the time (a 50% duty cycle), 

we want the LED to flash briefly, for say 200 ms, once per second (a 20% duty cycle).  That would require a 

delay of 200 ms while the LED is on, then a delay of 800 ms while it is off. 

Here is the complete program to do this, to illustrate how all the above fits together: 

;************************************************************************ 

;                                                                       * 

;   Description:    Lesson 3, example 1                                 * 

;                                                                       * 

;   Flashes a LED at approx 1Hz, with 20% duty cycle                    * 

;   LED continues to flash until power is removed                       * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Pin assignments:                                                    * 

;       GP1 - flashing LED                                              * 

;                                                                       * 

;************************************************************************ 

 

    list        p=12F509       

    #include    <p12F509.inc> 

 

                ; ext reset, no code protect, no watchdog, 4Mhz int clock 

    __CONFIG    _MCLRE_ON & _CP_OFF & _WDT_OFF & _IntRC_OSC 

 

 

;***** VARIABLE DEFINITIONS 

        UDATA 

dc1     res 1                   ; delay loop counters 

dc2     res 1 

dc3     res 1 

 

 

;************************************************************************ 

RESET   CODE    0x000           ; effective reset vector 

        movwf   OSCCAL          ; update OSCCAL with factory cal value  

 

 

;***** MAIN PROGRAM 

 

;***** Initialisation 
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start  

        movlw   b'111101'       ; configure GP1 (only) as an output 

        tris    GPIO 

 

;***** Main loop 

flash 

        movlw   b'000010'       ; set bit corresponding to GP1 (bit 1) 

        movwf   GPIO            ; write to GPIO to turn on LED 

        movlw   .20             ; stay on for 0.2s: 

        call    delay10         ;   delay 20 x 10ms = 200ms 

        clrf    GPIO            ; clear GPIO to turn off LED 

        movlw   .80             ; stay off for 0.8s: 

        call    delay10         ;   delay 80 x 10ms = 800ms 

        goto    flash           ; repeat forever 

 

 

;***** Subroutines 

delay10                         ; delay W x 10ms 

        movwf   dc3             ; delay = 1+Wx(3+10009+3)-1+4 -> Wx10.015ms 

 

dly2    movlw   .13             ; repeat inner loop 13 times 

        movwf   dc2             ; -> 13x(767+3)-1 = 10009 cycles 

                                 

        clrf    dc1             ; inner loop = 256x3-1 = 767 cycles 

dly1    decfsz  dc1,f            

        goto    dly1 

        decfsz  dc2,f           ; end middle loop 

        goto    dly1             

        decfsz  dc3,f           ; end outer loop 

        goto    dly2 

 

        retlw   0 

 

 

        END 

 

By using a variable delay subroutine, the main loop (starting at the label „flash‟) is much shorter and 

simpler than it would otherwise be. 

Note that this code does not use a shadow register.  It‟s no longer necessary, because the GP1 bit is being 

directly set/cleared.  It‟s not being flipped; there‟s no dependency on its previous value.  At no time does the 

GPIO register have to be read.  It‟s only being written to.  So “read-modify-write” is not a consideration 

here.  If that‟s unclear, go back to the description in lesson 2, and think about why an „xor‟ operation on an 

I/O register is different to simply writing a new value directly to the I/O register.  It‟s important to 

understand this point, but if you‟re ever in doubt about whether the “read-modify-write” problem may apply, 

it‟s best to be safe and use a shadow register. 

CALL Instruction Address Limitation 

Before moving on from subroutines, it is important that you be aware of a limitation in the baseline PIC 

architecture, regarding the addressing of subroutines. 

At the lowest level, PIC instructions consist of bits.  In the baseline PICs, the instruction words are 12 bits 

wide.  Some of the bits designate which instruction it is; this set of bits is called the opcode. 

For example, the opcode for movlw is 1100. 

The remaining bits in the 12-bit word are used to specify whatever value is associated with the instruction, 

such as a literal value, a register, or an address.  In the case of movlw, the opcode is only 4 bits long, leaving 

the other 8 bits to hold the literal value that will be moved into W. 

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_2.pdf
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For example, the 12-bit instruction word for „movlw 1‟ is 1100 00000001 (the last 8 bits being the binary 

for „1‟). 

The opcode for goto is 101.  That‟s only 3 bits, leaving 9 bits to specify the address to jump to.  9 bits are 

enough to specify any value from 0 to 511.  That‟s 512 addresses in all. 

The program memory on the 12F508 is 512 words.  Since the goto instruction can specify any of these 512 

addresses, it is able to jump anywhere in the 12F508‟s memory. 

However, the opcode for the call instruction is 1001.  That‟s 4 bits, leaving only 8 bits to specify the 

address of the subroutine being called. 

8 bits can hold a value from 0 to 255.  There‟s no problem if your subroutine is in the first 256 words of 

memory.  But what if it‟s at an address above 255?  With only 8 bits available for the address in the call 

instruction, how can you specify an address higher than 255?  The answer is that, on the baseline PICs, you 

can‟t. 

What‟s a program memory page?  Paging is discussed below, but, briefly, on the baseline PICs, program 

memory is split into pages 512 words long (it‟s no coincidence that that matches the number of locations that 

goto can address).  The 12F508 only has 512 words of program memory, forming a single page.  So for the 

12F508, we can say that subroutine calls are limited to the first 256 words of program memory.  It‟s possible 

for a subroutine to use goto to jump to somewhere in the second 256 words of a memory on a 12F508, but 

the entry point for every subroutine has to be within that first 256 words. 

That can be an awkward limitation to work around; if your main code is more than 256 instructions long and 

(as in the program above) you place your subroutines after the main code, you‟ll have a problem.  The 

MPASM assembler will warn you if you try to call a subroutine past the 256-word boundary.  The only way 

to fix it is to re-arrange your code. 

One approach would be to place the subroutines toward the beginning of the main code section, which we 

know is located at address 0x000 (the start of the first page), with a goto instruction immediately before the 

subroutines, to jump around them to the start of the main program code.  A problem with that approach is 

that all the subroutines plus the main code may be too big to fit into a single page (i.e. more than 512 words 

in total), but each code section has to fit within a single page.  The solution to that is simple – place the 

subroutines in the section located at 0x000 (so we know they are toward the start of a page), but put the main 

code into its own code section, which the linker can place anywhere in program memory – wherever it fits. 

A more significant problem is that placing all the subroutines toward the start of page doesn‟t mean that they 

will all start within the first 256 addresses in the page; if the subroutines together total more than 256 words, 

there could still be problems. 

The solution is to use a jump table, or subroutine vectors (or long calls).  The idea is that only the entry 

points for each subroutine are placed at the start of a page.  Each entry point consists of a „goto‟ instruction, 

jumping to the main body of the subroutine, which could be anywhere in memory – preferably in another 

CODE section so that the linker is free to place it wherever it fits best. 

The above program could be restructured to use a subroutine vector, as follows: 

RESET   CODE    0x000           ; effective reset vector 

        movwf   OSCCAL          ; update OSCCAL with factory cal value  

        goto    start           ; jump to main code 

 

;***** Subroutine vectors 

delay10 goto    delay10_R       ; delay W x 10ms 

 

 

In the baseline PIC architecture, subroutine calls are limited to the first 256 locations of any 

program memory page. 
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;***** Main program 

MAIN    CODE 

start ; Initialisation 

        movlw   b'111101'       ; configure GP1 (only) as an output 

        tris    GPIO 

 

;***** Main loop 

flash 

        movlw   b'000010'       ; set bit corresponding to GP1 (bit 1) 

        movwf   GPIO            ; write to GPIO to turn on LED 

        movlw   .20             ; stay on for 0.2s: 

        call    delay10         ;   delay 20 x 10ms = 200ms 

        clrf    GPIO            ; clear GPIO to turn off LED 

        movlw   .80             ; stay off for 0.8s: 

        call    delay10         ;   delay 80 x 10ms = 800ms 

        goto    flash           ; repeat forever 

 

 

;***** Subroutines 

SUBS    CODE 

 

delay10_R                       ; delay W x 10ms 

        movwf   dc3             ; -> 1+Wx(3+10009+3)-1+4 = Wx10.015ms 

dly2    movlw   .13             ; repeat inner loop 13 times 

        movwf   dc2             ; -> 13x(767+3)-1 = 10009 cycles 

        clrf    dc1             ; inner loop = 256x3-1 = 767 cycles 

dly1    decfsz  dc1,f            

        goto    dly1 

        decfsz  dc2,f           ; end middle loop 

        goto    dly1             

        decfsz  dc3,f           ; end outer loop 

        goto    dly2 

 

        retlw   0 

 

Dividing the program into so many CODE sections is of course overkill for such a small program, but if you 

adopt this approach you will avoid problems as your programs grow larger. 

The entry point for the „delay10‟ subroutine is guaranteed to be within the first 256 words of the program 

memory page, while the subroutine proper, renamed to „delay10_R‟ (R for routine) is in a separate code 

section which could be anywhere in memory – perhaps on a separate page.  And therein lies a problem; as 

written, this code is not guaranteed to work.  The following section explains why. 

Paging 

As discussed above, the goto instruction word only has 9 bits to specify the program location to jump to; 

enough to address up to a single page of 512 program words 

That‟s fine for the 12F508, which only has 512 words of program memory, but it‟s a problem for a device 

such as the 12F509, with 1024 words. 

The solution is to use a bit in the STATUS register, PA0, to select which page is to be accessed: 

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

STATUS GPWUF - PA0 TO   PD   Z DC C 

 

The program counter (PC) holds the full 12-bit address of the next instruction to be executed.  Whenever a 

goto instruction is executed, the lower 9 bits of the program counter (PC<8:0>) are taken from the goto 

instruction word, but the 10
th
 bit (PC<9>) is provided by the current value to PA0. 
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This is also true for the call instruction, except that, as explained earlier, only the lower 8 bits of the 

program counter come from the call instruction word, and PC<8> is always set to 0. 

(In fact, this is true for any instruction which modifies the program counter; a point we will come back to 

when we cover lookup tables in lesson 8.) 

Therefore, to goto or call an address in the first 512 words of program memory (page 0), you must first 

clear PA0.  To access a routine in page 1, you must first set PA0 to „1‟. 

If you don‟t update PA0, but then try to goto or call an address in a different page, you will instead jump 

the corresponding address in the current page – not the location you were trying to access, and your program 

will almost certainly fail. 

For baseline devices with 2048 words of program memory, such as the 16F59, this paging scheme is 

extended, with bit 6 of the STATUS register, referred to as PA1, providing PC<10>.  Given two page 

selection bits (PA0 and PA1), up to four 512-word pages can be selected, allowing a total of 2048 words. 

Using the PAGESEL directive 

If your program includes multiple code sections, you can‟t know beforehand where the linker will place them 

in memory, so you can‟t know how to set the page selection bits when jumping to locations in other sections. 

The solution is to use the „pagesel‟ directive, which instructs the assembler and linker to generate code to 

select the correct page for the given program address. 

To ensure that the program above will work correctly, regardless of which pages the main code and 

subroutines are on, pagesel directives should be added to the start-up and subroutine vector code, as 

follows: 

RESET   CODE    0x000           ; effective reset vector 

        movwf   OSCCAL          ; update OSCCAL with factory cal value  

        pagesel start 

        goto    start           ; jump to main code 

 

;***** Subroutine vectors 

delay10                         ; delay W x 10ms 

        pagesel delay10_R 

        goto    delay10_R        

 

And, then, since the delay10 subroutine entry point may be in a different page from the main code, 

pagesel directives should be added to the main loop, as follows: 

flash 

        movlw   b'000010'       ; set bit corresponding to GP1 (bit 1) 

        movwf   GPIO            ; write to GPIO to turn on LED 

        movlw   .20             ; stay on for 0.2s: 

        pagesel delay10 

        call    delay10         ;   delay 20 x 10ms = 200ms 

        clrf    GPIO            ; clear GPIO to turn off LED 

        movlw   .80             ; stay off for 0.8s: 

        call    delay10         ;   delay 80 x 10ms = 800ms 

        pagesel flash 

        goto    flash           ; repeat forever 

 

Note that there is no „pagesel‟ before the second call to „delay10‟.  It‟s unnecessary, because the first 

„pagesel‟ has already set the page selection bits for calls to „delay10‟.  If you‟re going to successively 

call subroutines in a single section, there is no need to add a „pagesel‟ for each; the first is enough. 

Finally, note the „pagesel‟ before the „goto‟ at the end of the loop.  This is necessary because, at that 

point, the page selection bits will still be set for whatever page the „delay10‟ entry point is on, not 

necessarily the current page. 

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_8.pdf


© Gooligum Electronics 2008  www.gooligum.com.au 

Baseline PIC Assembler, Lesson 3: Introducing Modular Code Page 9 

An alternative is to place a „pagesel $‟ directive (“select page for current address”) after each call 

instruction, to ensure that the current page is selected after returning from a subroutine. 

You do not, however, need to use pagesel before every goto or call, or after every call. Remember 

that, provided you use the default linker scripts, a single code section is guaranteed to be wholly contained 

within a single page.  So, once you know that you‟ve selected the correct page, subsequent gotos or calls 

to the same section will work correctly.  But be careful! 

If in doubt, using pagesel before every goto and call is a safe approach that will always work. 

Banking 

A limitation, similar to that for program memory access, also exists with data memory. 

As discussed earlier, the opcodes encoding the PIC instructions use a limited number of bits, as part of the 

instruction word, to represent a register in data memory or a program memory address.  In the baseline 

architecture, only 5 bits are allocated to register addressing.  That‟s enough to allow up to 32 registers to be 

directly addressed, corresponding to the size of a register bank: 32 registers. 

The PIC12F508 has 7 special function registers and 25 general purpose registers; 32 registers in total.  They 

are arranged as a single bank, as described in lesson 1. 

The 12F509 has 41 general 

purpose registers, in addition to 

the 7 special function registers; 

48 in total.  That‟s too many to 

fit into a single bank. 

To allow these additional 

registers to be addressed, they 

are arranged into two banks, as 

shown at the left. 

The bank to be accessed is 

selected by bit 5 in the FSR 

register (FSR<5>).  If it is 

cleared to „0‟, bank 0 is selected, 

and any instructions which 

reference a register will address 

a register in bank 0.  If FSR<5> 

is set to „1‟, bank 1 is selected, 

and subsequent instructions will 

reference registers in bank 1. 

The special function registers 

appear in both banks.  

Regardless of which bank is 

selected, you can refer directly 

to any special function register, 

such as GPIO.  That‟s not true 

in the midrange devices, where you have to be very careful to select the correct bank before accessing special 

function registers.  But on the baseline PICs, you don‟t have to worry about banking when working with 

special function registers. 

The first set of 9 general purpose registers (07h – 0Fh) are mapped into both banks.  Whichever bank is 

selected, these same registers will be addressed.  Registers like this, which appear at the same location across 

all banks, are referred to as shared.  They are very useful for storing data or variables which you want to 

access often, regardless of which bank is selected, without having to include bank selection instructions.  If 

you address a register as 07h or 27h, it will contain the same data; it‟s the same physical register. 

PIC12F509 Registers 

Address Bank 0 Address Bank 1 

00h INDF 20h INDF 

01h TMR0 21h TMR0 

02h PCL 22h PCL 

03h STATUS 23h STATUS 

04h FSR 24h FSR 

05h OSCCAL 25h OSCCAL 

06h GPIO 26h GPIO 

07h 

General 

Purpose 

Registers 

27h 

Map to Bank 0 

07h – 0Fh 
  

0Fh 2Fh 

10h 

General 

Purpose 

Registers 

30h 

General 

Purpose 

Registers 

  

1Fh 3Fh 

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_1.pdf
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The next 16 general purpose registers (10h – 1Fh) are accessed through bank 0 only.  If you set FSR<5> to 

select bank 1, you‟ll access an entirely separate set of 16 general purpose registers (30h – 3Fh). 

Note that, when referring to numeric register addresses, FSR<5> is considered to be bit 5 of the register 

address (bits 0 to 4 of the address coming from the instruction word). 

So the 12F509 has 9 shared general purpose registers, and 32 banked general purpose registers (16 in each of 

two banks), for a total of 41 bytes of data memory. 

Taking this banking scheme further, the 16F505 has 72 bytes of data memory, arranged into four banks: 8 

shared registers and 64 banked registers (16 in each bank).  As for the other baseline devices, the special 

function registers are mapped into each bank. 

The four data banks in the 16F505 are selected by bits 5 and 6 of the FSR register (FSR<6:5>): „00‟ selects 

bank 0, „01‟ for bank 1, „10‟ for bank 2, and „11‟ selects bank 3. 

Similarly, the 16F59 has 134 general purpose registers: 6 shared and 16 in each of 8 banks.  To specify 

which of the eight banks is selected, three bits are needed: FSR<7:5>.  Since FSR has no 8
th
 bit, this 

scheme can‟t be extended any further, so eight is the maximum number of data banks possible in the 

midrange architecture. 

Using the BANKSEL directive 

Typically, when you use the UDATA and RES directives to declare and allocate space in a section of data 

memory, you don‟t specify an address, allowing the linker to locate the section anywhere in data memory, 

fitting it around other sections.  The potential problem with this is that “anywhere in data memory” also 

means “in any bank”. 

When you refer to registers allocated within relocatable data sections, you can‟t know what bank they will be 

in, so you can‟t know how to set the bank selection bits in FSR. 

The solution is similar to that for paging: use the banksel directive to instruct the assembler and linker to 

generate appropriate code to select the correct bank for the given variable (or data address label). 

To ensure that the „delay10‟ routine accesses the register bank containing the delay loop counter variables, a 

banksel directive should be added, as follows: 

delay10_R                       ; delay W x 10ms 

        banksel dc3             ; -> ?+1+Wx(3+10009+3)-1+4 = Wx10.015ms 

        movwf   dc3              

dly2    movlw   .13             ; repeat inner loop 13 times 

        movwf   dc2             ; -> 13x(767+3)-1 = 10009 cycles 

        clrf    dc1             ; inner loop = 256x3-1 = 767 cycles 

dly1    decfsz  dc1,f            

        goto    dly1 

        decfsz  dc2,f           ; end middle loop 

        goto    dly1             

        decfsz  dc3,f           ; end outer loop 

        goto    dly2 

 

        retlw   0 

 

banksel is used the first time a group of variables is accessed, but not subsequently – unless another bank 

has been selected (for example, after calling a subroutine which may have selected a different bank). 

We know that all three variables will be in the same bank, since they are all declared as part of the same data 

section.  As long as you use the default, Microchip-supplied, linker scripts, that‟s guaranteed.  If you select 

the bank for one variable in a data section, then it will also be the correct bank for every other variable in that 

section, so we only need to use banksel once.  You only need another banksel if you‟re going to access 

a variable in a different data section. 
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Note that the code could have been started with „banksel dc1‟, instead of „banksel dc3‟; it would 

make no difference, because dc1 and dc3 are in the same section and therefore the same bank.  But it seems 

clearer, and more maintainable, to have banksel refer to the variable you‟re about to access, and to place it 

immediately before that access. 

Declaring a Shared Data Section 

As discussed above, not all data memory is banked.  The special function registers and some of the general 

purpose registers are mapped into every bank.  These shared registers are useful for storing variables that are 

used throughout a program, without having to worry about setting bank selection bits to access them. 

The UDATA_SHR directive is used to declare a section of shared data memory. 

It‟s used in the same way as UDATA; the only difference is that registers reserved in a UDATA_SHR section 

won‟t be banked. 

Since there is less shared memory available than banked memory, it should be used sparingly.  However, it 

can make sense to allocate shadow registers in shared memory, as they are likely to be used often. 

To summarise: 

 The first time you access a variable declared in a UDATA section, use banksel. 

 To access subsequent variables in the same UDATA section, you don‟t need to use banksel. 

(unless you had selected another bank between variable accesses) 

 Following a call to a subroutine or external module (see below), which may have selected a different 

bank, use banksel for the first variable accessed after the call. 

 To access variables in a UDATA_SHR section, there is never any need to use banksel. 

 

Relocatable Modules 

If you wanted to take a subroutine you had written as part of one program, and re-use it in another, you could 

simply copy and paste the source code into the new program. 

There are a few potential problems with this approach: 

 Address labels, such as „dly1‟, may already be in use in the new program, or in other pieces of code 

that you‟re copying. 

 You need to know which variables are needed by the subroutine, and remember to copy their 

definitions to the new program. 

 Variable names have the same problem as address labels – they may already be used in new 

program, in which case you‟d need to identify and rename all references to them. 

These problems can be avoided by keeping the subroutine code in a separate source file, where it is 

assembled into an object file, called an object module.  The main code is assembled into a separate object 

file.  These object files – one for the main code, plus one for each module, are then linked together to create 

the final executable code, which is output as a .hex file to be programmed into the PIC. This assembly/link 

(or build) process sounds complicated, but MPLAB takes care of the details, as we‟ll see. 
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Creating a multiple-file project 

Let‟s set up a project with the following files: 

 delay10.asm   - containing the W × 10 ms delay routine 

 L3-Flash_LED-main.asm - the main code (calling the delay routine) 

These can be based on parts of the programs developed above. 

 

To create the multiple-file project, open an existing project and then save it with a new name, such as “L3-

Flash_LED-mod”, in the same way as you did when creating new project in lesson 2. 

Open the assembler source containing the main loop and the „delay10‟ subroutine (e.g. from example 1, 

above) and save it, using “File  Save As…” as “delay10.asm”. 

Next close the editor window and run the project wizard as before, to reconfigure the active project. 

When you reach “Step Four: Add existing files to your project” window, rename the source file to “L3-

Flash_LED-main”, in the same way as was done in lesson 2 (changing the “U” next to the filename to “C”). 

Now find the “delay10.asm” file you saved before in the left hand pane, and click on “Add>>” to add it to 

your project.  The filename is already correct, but you should click on the “A” next to the filename to change 

it to a “U” to indicate that this is a user file, as shown:  
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After clicking on “Next >” and then “Finish”, you will see that your project now contains both source files: 

Of course there are a number of ways to create a multiple-file project. 

If you simply want to add an 

existing file (or files) to a 

project, you can right-click on 

“Source Files” in the project 

window, then select “Add Files” 

from the context menu, or else 

select the “Project  Add Files 

to Project…” menu item.  Either 

way, you will be presented with 

the window shown on the right.  

As you can see, it gives you the 

option, for each file, to specify 

whether it is a user (relative 

path) or system (absolute path) 

file. 

Or if you want to create a new 

file from scratch, instead of 

using an existing one, use the 

“Project  Add New File to 

Project…” menu item (also 

available under the File menu).  

You‟ll be presented with a blank 

editor window, into which you 

can copy text from other files (or 

simply start typing!). 

However you created them, now that you have a project which includes the two source files, we can consider 

their content… 
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Creating a Relocatable Module 

Converting an existing subroutine, such as our „delay10‟ routine, into a standalone, relocatable module is 

easy.  All you need to do is to declare any symbols (address labels or variables) that need to be accessible 

from other modules, using the GLOBAL directive. 

For example: 

    #include    <p12F509.inc>   ; any baseline device will do 

 

    GLOBAL      delay10_R 

 

 

;***** VARIABLE DEFINITIONS 

        UDATA 

dc1     res 1                   ; delay loop counters 

dc2     res 1 

dc3     res 1 

 

 

;************************************************************************ 

        CODE 

 

delay10_R                       ; delay W x 10ms 

        banksel dc3             ; -> ?+1+Wx(3+10009+3)-1+4 = Wx10.015ms 

        movwf   dc3              

dly2    movlw   .13             ; repeat inner loop 13 times 

        movwf   dc2             ; -> 13x(767+3)-1 = 10009 cycles 

        clrf    dc1             ; inner loop = 256x3-1 = 767 cycles 

dly1    decfsz  dc1,f            

        goto    dly1 

        decfsz  dc2,f           ; end middle loop 

        goto    dly1             

        decfsz  dc3,f           ; end outer loop 

        goto    dly2 

 

        retlw   0 

 

 

        END 

 

This is the subroutine from the earlier example, with a CODE directive at the beginning of it, and the UDATA 

directive to reserve the data memory it needs.  And toward the start, a GLOBAL directive has been added, 

declaring that the „delay10_R‟ label is to be made available (exported) to other modules, so that they can call 

this subroutine. 

You should also include (pardon the pun) a „#include‟ directive, to define any “standard” symbols used in 

the code, such as the instruction destinations „w‟ and „f‟.  This delay routine will work on any baseline PIC; 

it‟s not specific to any, so you can use the include file for any of the baseline PICs, such as the 12F509.  Note 

that there is no list directive; this avoids the processor mismatch errors that would be reported if you 

specify more than one processor in the modules comprising a single project. 

Of course it‟s also important to add a block of comments at the start; they should describe what this module 

is for, how it is used, any effects it has (including side effects, such as returning „0‟ in the W register), and 

any assumptions that have been made.  In this case, it is assumed that the processor is clocked at exactly 4 

MHz. 
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Calling Relocatable Modules 

Having created an external relocatable module (i.e. one in a separate file), we need to declare, in the main (or 

calling) file any labels we want to use from the module being called , so that the linker knows that these 

labels are defined in another module.  That‟s done with the EXTERN directive. 

For example: 

    list        p=12F509       

    #include    <p12F509.inc> 

 

    EXTERN      delay10_R       ; W x 10ms delay 

 

 

;***** CONFIGURATION 

                ; ext reset, no code protect, no watchdog, 4Mhz int clock 

    __CONFIG    _MCLRE_ON & _CP_OFF & _WDT_OFF & _IntRC_OSC 

 

 

;***** VARIABLE DEFINITIONS 

        UDATA_SHR 

sGPIO   res 1                   ; shadow copy of GPIO 

 

 

;************************************************************************ 

RESET   CODE    0x000           ; effective reset vector 

        movwf   OSCCAL          ; update OSCCAL with factory cal value  

        pagesel start 

        goto    start           ; jump to main code 

 

;***** Subroutine vectors 

delay10                         ; delay W x 10ms 

        pagesel delay10_R 

        goto    delay10_R        

 

 

;***** MAIN PROGRAM 

MAIN    CODE 

 

;***** Initialisation 

start 

        movlw   b'111101'       ; configure GP1 (only) as an output 

        tris    GPIO 

 

        clrf    sGPIO           ; start with shadow GPIO zeroed 

 

;***** Main loop 

flash 

        movf    sGPIO,w         ; get shadow copy of GPIO 

        xorlw   b'000010'       ; flip bit corresponding to GP1 (bit 1) 

        movwf   GPIO            ; write to GPIO 

        movwf   sGPIO           ; and update shadow copy 

        movlw   .50 

        pagesel delay10 

        call    delay10         ; delay 500ms -> 1Hz at 50% duty cycle 

 

        pagesel flash 

        goto    flash           ; repeat forever 

 

        END 
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This is the main loop from the “Flash an LED” program from lesson 2, with the inline delay routine replaced 

with a call to the “delay10” routine, and the variables used by the delay routine removed.  And toward the 

start of the program, an EXTERN directive has been added, to declare that the „delay10_R‟ label is a 

reference to another module.  Note that a subroutine vector is still used, as it is not possible to know where in 

program memory the linker will place the subroutine. 

Also note that the shadow register is declared as a shared variable in a UDATA_SHR segment, so there is no 

need to use banksel before accessing it. 

 

To summarise: 

 The GLOBAL and EXTERN directives work as a pair. 

 GLOBAL is used in the file that defines a module, to export a symbol for use by other modules. 

 EXTERN is used when calling external modules.  It declares that a symbol has been defined 

elsewhere. 

 

Complete programs 

Here are the modular delay and main flash routines, illustrating the use of external modules, banked and 

shared registers and page selection: 

delay10.asm 

;************************************************************************ 

;                                                                       * 

;   Filename:      delay10.asm                                          * 

;   Date:          22/9/07                                              * 

;   File Version:  1.1                                                  * 

;                                                                       * 

;   Author:        David Meiklejohn                                     * 

;   Company:       Gooligum Electronics                                 * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Architecture:  Baseline PIC                                         * 

;   Processor:     any                                                  * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Files required: none                                                * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Description:    Variable Delay : N x 10ms (10ms - 2.55s)            * 

;                                                                       * 

;       N passed as parameter in W reg                                  * 

;       exact delay = W x 10.015ms                                      * 

;                                                                       * 

;   Returns: W = 0                                                      * 

;   Assumes: 4MHz clock                                                 * 

;                                                                       * 

;************************************************************************ 

 

    #include    <p12F509.inc>   ; any baseline device will do 

 

    GLOBAL      delay10_R 

 

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_2.pdf
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;***** VARIABLE DEFINITIONS 

        UDATA 

dc1     res 1                   ; delay loop counters 

dc2     res 1 

dc3     res 1 

 

 

;************************************************************************ 

        CODE 

 

delay10_R                       ; delay W x 10ms 

        banksel dc3             ; -> ?+1+Wx(3+10009+3)-1+4 = Wx10.015ms 

        movwf   dc3              

dly2    movlw   .13             ; repeat inner loop 13 times 

        movwf   dc2             ; -> 13x(767+3)-1 = 10009 cycles 

        clrf    dc1             ; inner loop = 256x3-1 = 767 cycles 

dly1    decfsz  dc1,f            

        goto    dly1 

        decfsz  dc2,f           ; end middle loop 

        goto    dly1             

        decfsz  dc3,f           ; end outer loop 

        goto    dly2 

 

        retlw   0 

 

        END 

 

 

L3-Flash_LED-main.asm 

;************************************************************************ 

;   Filename:      L3-Flash_LED-main.asm                                * 

;   Date:          22/9/07                                              * 

;   File Version:  1.1                                                  * 

;                                                                       * 

;   Author:        David Meiklejohn                                     * 

;   Company:       Gooligum Electronics                                 * 

;                                                                       * 

;************************************************************************ 

;   Architecture:  Baseline PIC                                         * 

;   Processor:     12F508/509                                           * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Files required: delay10.asm     (provides W x 10ms delay)           * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Description:    Lesson 3, example 3                                 * 

;                                                                       * 

;   Demonstrates how to call external modules                           * 

;                                                                       * 

;   Flashes a LED at approx 1Hz.                                        * 

;   LED continues to flash until power is removed.                      * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Pin assignments:                                                    * 

;       GP1 - flashing LED                                              * 

;                                                                       * 

;************************************************************************ 
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    list        p=12F509       

    #include    <p12F509.inc> 

 

    EXTERN      delay10_R       ; W x 10ms delay 

 

 

;***** CONFIGURATION 

                ; ext reset, no code protect, no watchdog, 4Mhz int clock 

    __CONFIG    _MCLRE_ON & _CP_OFF & _WDT_OFF & _IntRC_OSC 

 

 

;***** VARIABLE DEFINITIONS 

        UDATA_SHR 

sGPIO   res 1                   ; shadow copy of GPIO 

 

 

;************************************************************************ 

RESET   CODE    0x000           ; effective reset vector 

        movwf   OSCCAL          ; update OSCCAL with factory cal value  

        pagesel start 

        goto    start           ; jump to main code 

 

;***** Subroutine vectors 

delay10                         ; delay W x 10ms 

        pagesel delay10_R 

        goto    delay10_R        

 

 

;***** MAIN PROGRAM 

MAIN    CODE 

 

;***** Initialisation 

start 

        movlw   b'111101'       ; configure GP1 (only) as an output 

        tris    GPIO 

 

        clrf    sGPIO           ; start with shadow GPIO zeroed 

 

;***** Main loop 

flash 

        movf    sGPIO,w         ; get shadow copy of GPIO 

        xorlw   b'000010'       ; flip bit corresponding to GP1 (bit 1) 

        movwf   GPIO            ; write to GPIO 

        movwf   sGPIO           ; and update shadow copy 

        movlw   .50 

        pagesel delay10 

        call    delay10         ; delay 500ms -> 1Hz at 50% duty cycle 

 

        pagesel flash 

        goto    flash           ; repeat forever 

 

 

        END 
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The Build Process (Revisited) 

In a multiple-file project, when you select the “Project  Build All” menu item, or click on 

the “Build All” toolbar icon, the assembler will assemble all the source files, producing a 

new „.o‟ object file for each.  The linker then combines these „.o‟ files to build a single 

„.hex‟ file, containing an image of the executable code to be programmed into the PIC. 

If, however, you‟ve been developing a multi-file project, and you‟ve already built it, and then go back and 

alter just one of the source files, there‟s no need to re-assemble all the other source files, if they haven‟t 

changed.  The object files corresponding to those unchanged source files will still be there, and they‟ll still 

be valid. 

That‟s what the “Project  Make” menu item (and the “Make” toolbar icon) does, as was 

discussed briefly in lesson 1.  Like “Build All”, it builds your project, but it only assembles 

source files which have a newer date stamp than the corresponding object file.  This is what you 

normally want, to save unnecessary assembly time (not that it makes much difference with such 

a small project!), so MPLAB includes a handy shortcut for “Make” – just press „F10‟. 

After you build (or make) the project, you‟ll see a number of new files in the project directory.  In addition to 

your „.asm‟ source files and the „.o‟ object files and the „.hex‟ output file we‟ve already discussed, you‟ll 

find a „.lst‟ file corresponding to each of the source files, and „.lst‟ and „.map‟ files corresponding to the 

project name. 

I won‟t describe these in detail, but they are worth looking at if you are curious about the build process.  And 

they can be valuable to refer to if you when debugging, as they show exactly what the assembler and linker 

are doing. 

The „.lst‟ list files show the output of the assembler; you can see the opcodes corresponding to each 

instruction.  They also show the value of every label.  But you‟ll see that, for the list files belonging to the 

source files (e.g. „delay10.lst‟), they contain a large number of question marks.  For example: 

0000                00047 delay10_R               ; delay W x 10ms 

0000   ???? ????    00048         banksel dc3     ; -> ?+1+Wx(3+10009+3)-1+4 = Wx10.015ms 

0002   00??         00049         movwf   dc3              

0003   0C0D         00050 dly2    movlw   .13     ; repeat inner loop 13 times 

 

0004   00??         00051         movwf   dc2     ; -> 13x(767+3)-1 = 10009 cycles 

0005   00??         00052         clrf    dc1     ; inner loop = 256x3-1 = 767 cycles 

0006   02??         00053 dly1    decfsz  dc1,f            

0007   0A??         00054         goto    dly1 

0008   02??         00055         decfsz  dc2,f   ; end middle loop 

0009   0A??         00056         goto    dly1             

000A   02??         00057         decfsz  dc3,f   ; end outer loop 

000B   0A??         00058         goto    dly2 

                    00059  

000C   0800         00060         retlw   0 

 

The banksel directive is completely undefined at this point; even the instruction hasn‟t been decided, so 

it‟s shown as „???? ????‟.  It can‟t be defined, because the location of „dc3‟ is unknown. 

Similarly, many of the instruction opcodes are only partially complete.  The question marks can‟t be filled in, 

until the location of all the data and program labels is known. 

Assigning locations to the various objects is the linker‟s job, and you can see the choices it has made by 

looking at the „.map‟ map file.  It shows where each section will be placed, and what the final data and 

program addresses are.  For example: 

                                 Section Info 

                  Section       Type    Address   Location Size(Bytes) 

                ---------  ---------  ---------  ---------  --------- 

                    RESET       code   0x000000    program   0x00000a 

                   .cinit    romdata   0x000005    program   0x000004 
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                    .code       code   0x000007    program   0x00001a 

                     MAIN       code   0x000014    program   0x000018 

                    RCCAL       code   0x0003ff    program   0x000002 

                  .config       code   0x000fff    program   0x000002 

               .udata_shr      udata   0x000007       data   0x000001 

                   .udata      udata   0x000010       data   0x000003 

 

                              Program Memory Usage  

                               Start         End       

                           ---------   ---------       

                            0x000000    0x00001f       

                            0x0003ff    0x0003ff       

                            0x000fff    0x000fff       

            34 out of 1029 program addresses used, program memory utilization is 3% 

 

                              Symbols - Sorted by Name 

                     Name    Address   Location    Storage File                      

                ---------  ---------  ---------  --------- ---------                 

                  delay10   0x000003    program     static C:\...\L3-Flash_LED-main.asm 

                delay10_R   0x000007    program     extern C:\...\delay10.asm 

                     dly1   0x00000d    program     static C:\...\delay10.asm 

 

These addresses are then reflected in the project „.lst‟ file, which shows the final assembled code, with all the 

actual instruction opcodes, with fully resolved addresses, that will be loaded into the PIC. 

Including Object Files 

When a module has been assembled, it‟s not necessary to have 

the source code to be able to use that module in a project.  

Instead you can include the object file directly. 

To see how that is done, right-click on „delay10.asm‟ in the 

workspace window, then select “Remove” to remove it from the 

project. 

Then right-click on “Object Files” and select “Add Files…”.  

This will open a dialog box where you can select the „delay10.o‟ 

file and add it to your project.  You should end up with a 

workspace window similar to that shown at right, with one 

source file and one object file included in the project. 

If you now do a “Build All”, only the „Flash_main.asm‟ source 

file will be assembled.  The „delay10.o‟ object file is used as-is. 

However, object modules are less flexible than source modules 

because an object file is only valid for the specific processor that 

it was built for.  You couldn‟t for example link the „delay10.o‟ file assembled for the PIC12F509 into a 

project being built for another processor, such as the PIC16F505.  You‟d have to include the assembler 

source file („delay10.asm‟) instead. 

When you have collected a number of modules for various functions, you can use the MPLIB librarian 

program to build a library, containing the object code for these modules.  You can then include the library in 

your project, instead of the individual object file.  That can be very useful when you have a suite of related 

modules, such as floating point maths functions.  The linker will only include the objects that your code 

references, not the whole library, so there is no penalty for using a library file.  We won‟t go into any detail 

Note: the processor types of all files included in a project must match. 

An object file can only be linked into a project if it was assembled for the same type of 

processor as the device selected for the project. 
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on building a library here, but you to be aware that they exist, in case you want to look up the details for 

yourself later. 

 

That‟s enough for now.  We‟ve been flashing LEDs for a while; it‟s time to move on. 

In the next lesson we‟ll look at reading and responding to switches, such as pushbuttons.  And since real 

switches “bounce”, and that can be a problem for microcontroller applications, we‟ll look at ways to 

“debounce” them. 

 

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_4.pdf
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