
© Gooligum Electronics 2008 www.gooligum.com.au

Baseline PIC Assembler, Lesson 4: Reading Switches Page 1

Introduction to PIC Programming

Baseline Architecture and Assembly Language

by David Meiklejohn, Gooligum Electronics

Lesson 4: Reading Switches

The previous lessons have introduced simple digital output, by turning on or flashing an LED. That‟s more

useful than you may think, since, with some circuit changes (such as adding transistors and relays), it can be

readily adapted to turning on and off almost any electrical device.

But most systems need to interact with their environment in some way; to respond according to user

commands or varying inputs. The simplest form of input is an on/off switch. This lesson shows how to read

and respond to a simple pushbutton switch, or, equivalently, a slide or toggle switch, or even something more

elaborate such as a mercury tilt switch – anything that makes or breaks a single connection.

This lesson covers:

 Reading digital inputs

 Conditional branching

 Using internal pull-ups

 Hardware and software approaches to switch debouncing

The Circuit

We need to add a pushbutton switch to the circuit used in lessons 1 to 3.

Luckily the Low Pin Count demo board used for these lessons includes a tact switch connected to pin GP3,

as shown below. You should keep the LED from the previous lessons connected to GP1.

The pushbutton is connected to GP3 via a 1 kΩ

resistor. This is good practice, but not strictly

necessary. Such resistors are used to provide

some isolation between the PIC and the external

circuit, for example to limit the impact of over- or

under-voltages on the input pin, electro-static

discharge (ESD, which pushbuttons, among other

devices, can be susceptible to), or to provide some

protection against an input pin being inadvertently

programmed as an output. If the switch was to be

pressed while the pin was mistakenly configured

as an output, set “high”, the result is likely to be a

dead PIC – unless there is a resistor to limit the

current flowing to ground.

In this case, that scenario is impossible, because,

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_2.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_1.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_3.pdf

© Gooligum Electronics 2008 www.gooligum.com.au

Baseline PIC Assembler, Lesson 4: Reading Switches Page 2

as mentioned in lesson 1, GP3 can only ever be an input. So why the resistor? Besides helping to protect

the PIC from ESD, the resistor is necessary to allow the PIC to be safely and successfully programmed.

You might recall, from lesson 0, that the PICkit 2 is an In-Circuit Serial Programming (ICSP) programmer.

The ICSP protocol allows the PICs that support it to be programmed while in-circuit. That is, they don‟t

have to be removed from the circuit and placed into a separate, stand-alone programmer. That‟s very

convenient, but it does place some restrictions on the circuit. The programmer must be able to set

appropriate voltages on particular pins, without being affected by the rest of the circuit. That implies some

isolation, and often a simple resistor, such as the 1 kΩ resistor here, is all that is needed.

To place a PIC12F508/9 into programming mode, a high voltage (around 12V) is applied to pin 4 – the same

pin that is used for GP3. Imagine what would happen if, while the PIC was being programmed, with 12V

applied to pin 4, that pin was grounded by someone pressing a pushbutton connected directly to it! The

result in this case wouldn‟t be a dead PIC; it would be a dead PICkit 2 programmer…

But, if you are sure that you know what you are doing and understand the risks, you can leave out isolation

or protection resistors, such as the 1 kΩ resistor on GP3.

The 10 kΩ resistor holds GP3 high while the switch is open. How can we be sure? According to the

PIC12F509 data sheet, GP3 sinks up to 5 µA (parameter D061A). That equates to a voltage drop of up to 55

mV across the 10 kΩ and 1 kΩ resistors in series (5 µA × 11 kΩ), so, with the switch open, the voltage at

GP3 will be a minimum of VDD  55 mV. The minimum supply voltage is 2.0 V (parameter D001), so in

the worst case, the voltage at GP3 = 2.0  55 mV = 1.945 V. The lowest input voltage guaranteed to be read

as “high” is given as 0.25 VDD + 0.8 V (parameter D040A). For VDD = 2.0 V, this is 0.25 × 2.0 V + 0.8 V =

1.3 V. That‟s well below the worst-case “high” input to GP3 of 1.945 V, so with these resistors, the pin is

guaranteed to read as “high”, over the allowable supply voltage range.

In practice, you generally don‟t need to bother with such detailed analysis. As a rule of thumb, 10 kΩ is a

good value for a pull-up resistor like this. But, it‟s good to know that the rule of thumb is supported by the

characteristics specified in the data sheet.

When the switch is pressed, the pin is pulled to ground through the 1 kΩ resistor. According to the data

sheet, GP3 sources up to 5 µA (parameter D061A). The voltage drop across the 1 kΩ resistor will be up to 5

mV (5 µA × 1 kΩ), so with the switch closed, the voltage at GP3 will be a maximum of 5 mV. The highest

input voltage guaranteed to be read as a “low” is 0.15 VDD (parameter D030A). For VDD = 2.0 V (the worst

case), this is 0.15 × 2.0 V = 300 mV. That‟s above the maximum “low” input to GP3 of 5mV, so the pin is

guaranteed to read as “low” when the pushbutton is pressed.

Again, that‟s something you come to know as a rule of thumb. With just a little experience, you‟ll look at a

circuit like this and see immediately that GP3 is normally held high, but is pulled low if the pushbutton is

pressed.

Interference from MCLR

There is a potential problem with using a pushbutton on GP3; as we have seen, the same pin can instead be

configured (using the PIC‟s configuration word) as the processor reset line, MCLR .

This is a problem because, by default, as we saw in lesson 1, when the PICkit 2 is used as a programmer

from within MPLAB, it holds the MCLR line low after programming. You can then make the MCLR line go

high by selecting “Release from Reset”. Either way, the PICkit 2 is asserting control over the MCLR line,

connected directly to pin 4, and, because of the 1 kΩ isolation resistor, the 10 kΩ pull-up resistor and the

pushbutton cannot overcome the PICkit 2‟s control of that line.

When the PICkit 2 is used as a programmer within MPLAB, it will, by default, assert control of

the MCLR line, overriding the pushbutton switch on the Low Pin Count Demo Board.

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_1.pdf
http://www.gooligum.com.au/tutorials/PIC_Intro_0.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_1.pdf

© Gooligum Electronics 2008 www.gooligum.com.au

Baseline PIC Assembler, Lesson 4: Reading Switches Page 3

If you are using MPLAB 8.10 or later, this problem can be overcome by changing the PICkit 2 programming

settings, to tri-state the PICkit 2‟s MCLR output (effectively disconnecting it) when it is not being used to

hold the PIC in reset.

To do this, select the PICkit 2 as a

programmer (using the “Programmer →

Select Programmer” submenu) and then use

the “Programmer → Settings” menu item to

display the PICkit 2 Settings dialog

window, shown on the right.

Select the „3-State on “Release from

Reset”‟ option in the “Settings” tab and then

click on the “OK” button.

After using the PICkit 2 to program your

device, the PICkit 2 will assert control of

the MCLR line, holding it low. If your

application is not configured for external

reset, the GP3 input will be held low,

overriding the pushbutton on the LPC

Demo Board.

When you now click on the on the icon

in the programming toolbar, or select the

“Programmer  Release from Reset” menu

item, the PICkit 2 will release control of the

reset line, allowing GP3 to be driven high

or low by the pull-up resistor and pushbutton.

Reading the Switch

We‟ll start with a short program that simply turns the LED on when the pushbutton is pressed.

Of course, that‟s a waste of a microcontroller. To get the same effect, you could leave the

PIC out and build the circuit shown on the right! But, this simple example avoids having to

deal with the problem of switch contact bounce, which we‟ll look at later.

In general, to read a pin, we need to:

 Configure the pin as an input

 Read or test the bit corresponding to the pin

Recall, from lesson 1, that the pins on the 12F508 and 12F509 are only digital inputs or

outputs. They can be turned on or off, but nothing in between. Similarly, they can read only

a voltage as being “high” or “low”. As mentioned above, the data sheet defines input voltage

ranges where the pin is guaranteed to read as “high” or “low”. For voltages between these

ranges, the pin might read as either; the input behaviour for intermediate voltages is undefined.

As you might expect, a “high” input voltage reads as a „1‟, and a “low” reads as a „0‟.

Normally, to configure a pin as an input, you would set the corresponding TRIS bit to „1‟. However, this

circuit uses GP3 as an input. As discussed above, GP3 is a special pin, in that it can be configured as an

external reset. If it is not configured as a reset, it is always an input. So, when using GP3 as an input,

there‟s no need to set the TRIS bit. Although for clarity, you may as well do so.

© Gooligum Electronics 2008 www.gooligum.com.au

Baseline PIC Assembler, Lesson 4: Reading Switches Page 4

An instruction such as „movf GPIO,w‟ will read the bit corresponding to GP3. The problem is that it

reads all the pins in GPIO, not just GP3. If you want to act only on a single bit, you need to separate it from

the rest, which can be done with logical masking and shift instructions, but there‟s a much easier way – use

the bit test instructions. There are two:

„btfsc f,b‟ tests bit „b‟ in register „f‟. If it is „0‟, the following instruction is skipped – “bit test file

register, skip if clear”.

„btfss f,b‟ tests bit „b‟ in register „f‟. If it is „1‟, the following instruction is skipped – “bit test file

register, skip if set”.

Their use is illustrated in the following code:

start

 movlw b'111101' ; configure GP1 (only) as an output

 tris GPIO ; (GP3 is an input)

 clrf GPIO ; start with GPIO clear (GP1 low)

loop

 btfss GPIO,3 ; if button pressed (GP3 low)

 bsf GPIO,1 ; turn on LED

 btfsc GPIO,3 ; if button up (GP3 high)

 bcf GPIO,1 ; turn off LED

 goto loop ; repeat forever

Note that the logic seems to be inverse; the LED is turned on if GP3 is clear, yet the „btfss‟ instruction

tests for the GP3 bit being set. Since the bit test instructions skip the next instruction if the bit test condition

is met, the instruction following a bit test is executed only if the condition is not met. Often, following a bit

test instruction, you‟ll place a „goto‟ or „call‟ to jump to a block of code that is to be executed if the bit

test condition is not met. In this case, there is no need, as the LED can be turned on or off with single

instructions, which we have (surprisingly) not seen before:

„bsf f,b‟ sets bit „b‟ in register „f‟ to „1‟ – “bit set file register”.

„bcf f,b‟ clears bit „b‟ in register „f‟ to „0‟ – “bit clear file register”.

Previously, we have set, cleared and toggled bits by operating on the whole GPIO port at once. That‟s what

these bit set and clear instructions are doing behind the scenes; they read the entire port, set or clear the

designated bit, and then rewrite the result. They are examples of „read-modify-write‟ instructions, as

discussed in lesson 2, and their use can lead to unintended effects – you may find that bits other than the

designated one are also being changed. This unwanted effect often occurs when sequential bit set/clear

instructions are performed on the same port. Trouble can be avoided by separating sequential „bsf‟ and

„bcf‟ instructions with a „nop‟.

Although unlikely to be necessary in this case, since the bit set/clear instructions are not sequential, a shadow

register (see lesson 2) could be used as follows:

start

 movlw b'111101' ; configure GP1 (only) as an output

 tris GPIO ; (GP3 is an input)

 clrf GPIO ; start with GPIO clear (LED off)

 clrf sGPIO ; update shadow copy

loop

 btfss GPIO,3 ; if button pressed (GP3 low)

 bsf sGPIO,1 ; turn on LED

 btfsc GPIO,3 ; if button up (GP3 high)

 bcf sGPIO,1 ; turn off LED

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_2.pdf

© Gooligum Electronics 2008 www.gooligum.com.au

Baseline PIC Assembler, Lesson 4: Reading Switches Page 5

 movf sGPIO,w ; copy shadow to GPIO

 movwf GPIO

 goto loop ; repeat forever

It‟s possible to optimise this a little. There is no need to test for button up as well as button down; it will be

either one or the other, so we can instead write a value to the shadow register, assuming the button is up (or

down), and then test just once, updating the shadow if the button is found to be down (or up).

It‟s also not really necessary to initialise GPIO at the start; whatever it is initialised to, it will be updated the

first time the loop completes, a few µs later – much too fast to see. If setting the initial values of output pins

correctly is important, to avoid power-on glitches that may affect circuits connected to them, the correct

values should be written to the port registers before configuring the pins as outputs, i.e. initialise GPIO

before TRIS.

But when dealing with human perception, it‟s not important, so the following code is acceptable:

;***** VARIABLE DEFINITIONS

 UDATA_SHR

sGPIO res 1 ; shadow copy of GPIO

;**

RESET CODE 0x000 ; effective reset vector

 movwf OSCCAL ; update OSCCAL with factory cal value

;***** MAIN PROGRAM

;***** Initialisation

start

 movlw b'111101' ; configure GP1 (only) as an output

 tris GPIO ; (GP3 is an input)

;***** Main loop

loop

 clrf sGPIO ; assume button up -> LED off

 btfss GPIO,3 ; if button pressed (GP3 low)

 bsf sGPIO,1 ; turn on LED

 movf sGPIO,w ; copy shadow to GPIO

 movwf GPIO

 goto loop ; repeat forever

If you didn‟t use a shadow register, but tried to take the same approach – assuming a state (e.g. “button up”),

setting GPIO, then reading the button and changing GPIO accordingly – it would mean that the LED would

be flickering on and off, albeit too fast to see. Using a shadow register is a neat solution that avoids this

problem, as well as any read-modify-write concerns, since the physical register (GPIO) is only ever updated

with the correctly determined value.

© Gooligum Electronics 2008 www.gooligum.com.au

Baseline PIC Assembler, Lesson 4: Reading Switches Page 6

Debouncing

In most applications, you want your code to respond to transitions; some action should be triggered when a

button is pressed or a switch is toggled. This presents a problem when interacting with real, physical

switches, because their contacts bounce. When most switches change, the contacts in the switch will make

and break a number of times before settling into the new position. This contact bounce is generally too fast

for the human eye to see, but microcontrollers are fast enough to react to each of these rapid, unwanted

transitions.

Dealing with this problem is called switch debouncing.

The following picture is a recording of an actual switch bounce, using a common pushbutton switch:

The switch transitions several times before settling into the new state (low), after around 250 µs.

A similar problem can be caused by electromagnetic interference (EMI). Unwanted spikes may appear on an

input line, due to electromagnetic noise, especially (but not only) when switches or sensors are some distance

from the microcontroller. But any solution which deals effectively with contact bounce will generally also

remove or ignore input spikes caused by EMI.

© Gooligum Electronics 2008 www.gooligum.com.au

Baseline PIC Assembler, Lesson 4: Reading Switches Page 7

Hardware debouncing

Debouncing is effectively a filtering problem; you want to filter out fast transitions, leaving only the slower

changes that result from intentional human input.

That suggests a low-pass filter; the simplest of which consists of a resistor

and a capacitor (an “RC filter”).

To debounce a normally-open pushbutton switch, pulled high by a resistor,

the simplest hardware solution is to place a capacitor directly across the

switch, as shown at right.

In theory, that‟s all that‟s needed. The idea is that, when the switch is

pressed, the capacitor is immediately discharged, and the input will go

instantly to 0 V. When the contacts bounce open, the capacitor will begin to

charge, through the resistor. The voltage at the input pin is the voltage

across the capacitor:







 


RC

t

DDin eVV 1

This is an exponential function with a time constant equal to the product RC.

The general I/O pins on the PIC12F508/9 act as TTL inputs: given a 5 V power supply, any input voltage

between 0 V and 0.8 V reads as a „0‟ (according to parameter D030 in the data sheet).

As long as the input voltage remains below 0.8 V, the PIC will continue to read „0‟, which is what we want,

to avoid transitions to „1‟ due to switch bounce.

Solving the above equation for VDD = 5.0 V and Vin = 0.8 V gives t = 0.174RC.

This is the maximum time that the capacitor can charge, before the input voltage goes higher than that

allowed for a logical „0‟. That is, it‟s the longest „high‟ bounce that will be filtered out.

In the pushbutton press recorded above, the longest „high‟ bounce is approx. 25 µs. Assuming a pull-up

resistance of 10 kΩ, as in the original circuit, we can solve for C = 25 µs ÷ (0.174 × 10 kΩ) = 14.4 nF. So,

in theory, any capacitor 15 nF or more could be used to effectively filter out these bounces.

In practice, you don‟t really need all these calculations. As a rule of thumb, if you choose a time constant

several times longer than the maximum settling time (250 µs in the switch press above), the debouncing will

be effective. So, for example, 1 ms would be a reasonable time constant to aim for here – it‟s a few times

longer than the settling time, but still well below human perception (no one will notice a 1 ms delay after

pressing a button).

To create a time constant of 1 ms, you can use a 10 kΩ pull-up resistor with a 100 nF capacitor:

 10 kΩ × 100 nF = 1 ms

© Gooligum Electronics 2008 www.gooligum.com.au

Baseline PIC Assembler, Lesson 4: Reading Switches Page 8

Testing the above circuit, with R = 10 kΩ, C = 100 nF and using the same pushbutton switch as before, gave

the following response:

Sure enough, the bounces are all gone, but there is now an overshoot – a ringing at around 2 MHz, decaying

in around 2 µs. What‟s going on?

The problem is that the description above is idealised. In the real world, capacitors and switches and the

connections between them all have resistance, so the capacitor cannot discharge instantly (which is why the

edge on the high  low transition shown above is not, and can never be, exactly vertical). More

significantly, every component and interconnection has some inductance. The combination of inductance

and capacitance leads to oscillation (the 2 MHz ringing). Inductance has the effect of maintaining current

flow. When the switch contacts are closed, a high current rapidly discharges the capacitor. The inductance

causes this current flow to continue beyond the point where the capacitor is fully discharged, slightly

charging in the opposite direction, making Vin go (briefly) negative. Then it reverses, the capacitor

discharging in the opposite direction, overshooting again, and so on – the oscillation losing energy to

resistance and quickly dying away.

So – is this a problem? Yes!

According to the PIC12F508/9 data sheet, the absolute minimum voltage allowed on any input pin is -0.3 V.

But the initial overshoot in the pushbutton press response, shown above, is approx. -1.5 V. That means that

this simple debounce circuit is presenting voltages outside the 12F508/9‟s absolute maximum ratings. You

might get away with it. Or you might end up with a fried PIC!

© Gooligum Electronics 2008 www.gooligum.com.au

Baseline PIC Assembler, Lesson 4: Reading Switches Page 9

To avoid this problem, we need to limit the discharge current from the

capacitor, since it is the high discharge current that is working through stray

inductance to drive the input voltage to a dangerously low level.

In the circuit shown at right, the discharge current is limited by the addition

of resistor R2.

We still want the capacitor to discharge much more quickly than it charges,

since the circuit is intended to work essentially the same way as the first – a

fast discharge to 0 V, followed by much slower charging during „high‟

bounces. So we should have R2 much smaller than R1.

The following oscilloscope trace shows the same pushbutton response as

before, with R1 = 10 kΩ, R2 = 100 Ω and C = 100 nF:

The ringing has been eliminated.

Instead of large steps from low to high, the bounces show as “ramps”, of up to 75 µs, where the voltage rises

by up to 0.4 V.

This effect could be reduced, and the decline from high to low made smoother, by adjusting the values of R1,

R2 and C. But small movements up and down, of a fraction of a volt, will never be eliminated. And the fact

that the high  low transition takes time to settle is a problem for the PIC‟s inputs.

With a 5 V power supply, according to the PIC12F508/9 data sheet, a voltage between 0.8 V and 2.0 V on a

TTL-compatible input (any of the general I/O pins) is undefined. Voltages between 0.8 V and 2.0 V could

read as either a „0‟ or a „1‟. If we can‟t guarantee what value will be read, we can‟t say that the switch has

been debounced; it‟s still an unknown.

© Gooligum Electronics 2008 www.gooligum.com.au

Baseline PIC Assembler, Lesson 4: Reading Switches Page 10

An effective solution to this problem is to use a Schmitt trigger

buffer, such as a 74LS14 inverter, as shown in the circuit on the

right.

A Schmitt trigger input displays hysteresis; on the high  low

transition, the buffer will not change state until the input falls to a

low voltage threshold (say 0.8 V). It will not change state again,

until the input rises to a high voltage threshold (say 1.8 V).

That means that, given a slowly changing input signal, which is

generally falling, with some small rises on the way down (as in

the trace above), only a single transition will appear at the buffer‟s

output. Similarly, a Schmitt trigger will clean up slowly rising,

noisy input signal, producing a single sharp transition, at the

correct TTL levels, suitable for interfacing directly to the PIC.

Of course, if you use a Schmitt trigger inverter, as shown here, you must reverse your program‟s logic: when

the switch is pressed, the PIC will see a „1‟ instead of a „0‟.

Note that when some of the PIC12F508/9‟s pins are configured for special function inputs, instead of general

purpose inputs, they use Schmitt trigger inputs. For example, pin 4 of the 12F508/9 can be configured as an

external reset line (MCLR) instead of GP3. When connecting a switch for external MCLR , you only need

an RC filter for debouncing; the Schmitt trigger is built into the reset circuitry on the PIC.

Software debouncing

One of the reasons to use microcontrollers is that they allow you to solve what would otherwise be a

hardware problem, in software. A good example is switch debouncing.

If the software can ignore input transitions due to contact bounce or EMI, while responding to genuine

switch changes, no external debounce circuitry is needed. As with the hardware approach, the problem is

essentially one of filtering; we need to ignore any transitions too short to be „real‟.

But to illustrate the problem, and provide a base to build on, we‟ll start with some code with no debouncing

at all.

Suppose the task is to toggle the LED on GP1, once, each time the button on GP3 is pressed.

In pseudo-code, this could be expressed as:

do forever

 wait for button press

 toggle LED

 wait for button release

end

Note that it is necessary to wait for the button to be released before restarting the loop, so that the LED

should only toggle once per button press. If we didn‟t wait for the button to be released before continuing,

the LED would continue to toggle as long as the button was held down; not the desired behaviour.

Here is some code which implements this:

;***** VARIABLE DEFINITIONS

 UDATA_SHR

sGPIO res 1 ; shadow copy of GPIO

;**

RESET CODE 0x000 ; effective reset vector

 movwf OSCCAL ; update OSCCAL with factory cal value

© Gooligum Electronics 2008 www.gooligum.com.au

Baseline PIC Assembler, Lesson 4: Reading Switches Page 11

;***** MAIN PROGRAM

;***** Initialisation

start

 clrf GPIO ; start with LED off

 clrf sGPIO ; update shadow

 movlw b'111101' ; configure GP1 (only) as an output

 tris GPIO ; (GP3 is an input)

;***** Main loop

loop

waitdn btfsc GPIO,3 ; wait until button pressed (GP3 low)

 goto waitdn

 movf sGPIO,w

 xorlw b'000010' ; toggle LED on GP1

 movwf sGPIO ; using shadow register

 movwf GPIO

waitup btfss GPIO,3 ; then released (GP3 high)

 goto waitup

 goto loop ; repeat forever

If you build this program and test it, you will find that it is difficult to reliably change the LED when you

press the button; sometimes it will change, other times not. This is due to contact bounce.

Debounce delay

The simplest approach to software debouncing is to not attempt to detect the bounces at all.

Instead, you can estimate the maximum time the switch could possibly take to settle, and then simply wait at

least that long, after detecting the first transition. If the wait time, or delay, is longer than the maximum

possible settling time, then you can be sure that, after the delay, the switch will have finished bouncing.

It‟s simply a matter of adding a suitable debounce delay, after each transition is detected, as in the following

pseudo-code:

do forever

 wait for button press

 toggle LED

delay debounce_time

 wait for button release

delay debounce_time

end

Note that the LED is toggled immediately after the button press is detected. There‟s no need to wait for

debouncing. By acting on the button press as soon as it is detected, the user will experience as fast a

response as possible.

But it is important to ensure that the “button pressed” state is stable (debounced), before waiting for button

release. Otherwise, the first bounce after the button press would be seen as a release.

The necessary minimum delay time depends on the characteristics of the switch. For example, the switch

tested above was seen to settle in around 250 µs. Repeated testing showed no settling time greater than 1 ms,

but it‟s difficult to be sure of that, and perhaps a different switch, say that used in production hardware,

rather than the prototype, may behave differently. So it‟s best to err on the safe side, and choose the longest

delay we can get away with. People don‟t notice delays of 20 ms or less (flicker is only barely perceptible at

50Hz, corresponding to a 20 ms delay), so a good choice is probably 20 ms.

© Gooligum Electronics 2008 www.gooligum.com.au

Baseline PIC Assembler, Lesson 4: Reading Switches Page 12

As you can see, choosing a suitable debounce delay is not an exact science!

The above code can be modified to call the 10 ms delay module we developed in lesson 3, as follows:

loop

waitdn btfsc GPIO,3 ; wait until button pressed (GP3 low)

 goto waitdn

 movf sGPIO,w

 xorlw b'000010' ; toggle LED on GP1

 movwf sGPIO ; using shadow register

 movwf GPIO

 movlw .2

 pagesel delay10

 call delay10 ; delay 20ms to debounce (GP3 low)

 pagesel $

waitup btfss GPIO,3 ; wait until button released (GP3 high)

 goto waitup ; before continuing

 movlw .2

 pagesel delay10

 call delay10 ; delay 20ms to debounce (GP3 high)

 pagesel $

 goto loop ; repeat forever

If you build and test this code, you should find that the LED now reliably changes state every time you press

the button.

Counting algorithm

There are a couple of problems with using a fixed length delay for debouncing.

Firstly, the need to be “better safe than sorry” means making the delay as long as possible, and probably

slowing the response to switch changes more than is really necessary, potentially affecting the feel of the

device you‟re designing.

More importantly, the delay approach cannot differentiate between a glitch and the start of a switch change.

As discussed, spurious transitions can be caused be EMI, or electrical noise – or a momentary change in

pressure while a button is held down.

A commonly used approach, which avoids these problems, is to regularly read (or sample) the input, and

only accept that the switch is in a new state, when the input has remained in that state for some number of

times in a row. If the new state isn‟t maintained for enough consecutive times, it‟s considered to be a glitch

or a bounce, and is ignored.

For example, you could sample the input every 1 ms, and only accept a new state if it is seen 10 times in a

row; i.e. high or low for a continuous 10 ms.

To do this, set a counter to zero when the first transition is seen. Then, for each sample period (say every 1

ms), check to see if the input is still in the desired state and, if it is, increment the counter before checking

again. If the input has changed state, that means the switch is still bouncing (or there was a glitch), so the

counter is set back to zero and the process restarts. The process finishes when the final count is reached,

indicating that the switch has settled into the new state.

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_3.pdf

© Gooligum Electronics 2008 www.gooligum.com.au

Baseline PIC Assembler, Lesson 4: Reading Switches Page 13

The algorithm can be expressed in pseudo-code as:

count = 0

while count < max_samples

 delay sample_time

 if input = required_state

 count = count + 1

 else

 count = 0

end

Here is the modified “toggle an LED” main loop, illustrating the use of this counting debounce algorithm:

loop

 banksel db_cnt

db_dn clrf db_cnt ; wait until button pressed (GP3 low)

 clrf dc1 ; debounce by counting:

dn_dly incfsz dc1,f ; delay 256x3 = 768us.

 goto dn_dly

 btfsc GPIO,3 ; if button up (GP3 set),

 goto db_dn ; restart count

 incf db_cnt,f ; else increment count

 movlw .13 ; max count = 10ms/768us = 13

 xorwf db_cnt,w ; repeat until max count reached

 btfss STATUS,Z

 goto dn_dly

 movf sGPIO,w

 xorlw b'000010' ; toggle LED on GP1

 movwf sGPIO ; using shadow register

 movwf GPIO

db_up clrf db_cnt ; wait until button released (GP3 high)

 clrf dc1 ; debounce by counting:

up_dly incfsz dc1,f ; delay 256x3 = 768us.

 goto up_dly

 btfss GPIO,3 ; if button down (GP3 clear),

 goto db_up ; restart count

 incf db_cnt,f ; else increment count

 movlw .13 ; max count = 10ms/768us = 13

 xorwf db_cnt,w ; repeat until max count reached

 btfss STATUS,Z

 goto up_dly

 goto loop ; repeat forever

There are two debounce routines here; one for the button press, the other for button release. The program

first waits for a pushbutton press, debounces the press, then toggles the LED before waiting for the

pushbutton to be released, and then debouncing the release.

The only difference between the two debounce routines is the input test: „btfsc GPIO,3‟ when testing for

button up, versus „btfss GPIO,3‟ to test for button down.

The above code demonstrates one method for counting up to a given value (13 in this case):

The count is zeroed at the start of the routine.

It is incremented within the loop, using the „incf‟ instruction – “increment file register”. As with many

other instructions, the incremented result can be written back to the register, by specifying „,f‟ as the

destination, or to W, by specifying „,w‟ – but normally you would use it as shown, with „,f‟, so that the

© Gooligum Electronics 2008 www.gooligum.com.au

Baseline PIC Assembler, Lesson 4: Reading Switches Page 14

count in the register is incremented. The baseline PICs also provide a „decf‟ instruction – “decrement file

register”, which is similar to „incf‟, except that it performs a decrement instead of increment.

We‟ve seen the „xorwf‟ instruction before, but not used in quite this way. The result of exclusive-oring any

binary number with itself is zero. If any dissimilar binary numbers are exclusive-ored, the result will be non-

zero. Thus, XOR can be used to test for equality, which is how it is being used here. First, the maximum

count value is loaded into W, and then this max count value in W is xor‟d with the loop count. If the loop

counter has reached the maximum value, the result of the XOR will be zero. Note that we do not care what

the result of the XOR actually is, only whether it is zero or not. And we certainly do not want to overwrite

the loop counter with the result, so we specify „,w‟ as the destination of the „xorwf‟ instruction – writing

the result to W, effectively discarding it.

To check whether the result of the XOR was zero (which will be true if the count has reached the maximum

value), we use the „btfss‟ instruction to test the zero flag bit, Z, in the STATUS register.

Alternatively, the debounce loop could have been coded by initialising the loop counter to the maximum

value at the start of the loop, and using „decfsz‟ at the end of the loop, as follows:

db_dn ; wait until button pressed (GP3 low), debounce by counting:

 movlw .13 ; max count = 10ms/768us = 13

 movwf db_cnt

 clrf dc1

dn_dly incfsz dc1,f ; delay 256x3 = 768us.

 goto dn_dly

 btfsc GPIO,3 ; if button up (GP3 set),

 goto db_dn ; restart count

 decfsz db_cnt,f ; else repeat until max count reached

 goto dn_dly

That‟s two instructions shorter, and at least as clear, so it‟s a better way to code this routine.

But in certain other situations it really is better count up to a given value, so it‟s worth knowing how to do

that, including the use of XOR to test for equality, as shown above.

Internal Pull-ups

The use of pull-up resistors is so common that most

modern PICs make them available internally, on at least

some of the pins.

By using internal pull-ups, we can do away with the

external pull-up resistor, as shown in the circuit on the

right.

Strictly speaking, the internal pull-ups are not simple

resistors. Microchip refer to them as “weak pull-ups”;

they provide a small current which is enough to hold a

disconnected, or floating, input high, but does not

strongly resist any external signal trying to drive the

input low. This current is typically 250 µA on most

input pins (parameter D070), or up to 30 µA on GP3,

when configured with internal pull-ups enabled.

© Gooligum Electronics 2008 www.gooligum.com.au

Baseline PIC Assembler, Lesson 4: Reading Switches Page 15

The internal weak pull-ups are controlled by the GPPU bit in the OPTION register:

The OPTION register is used to control various aspects of the PIC‟s operation, including the timer (which

will be introduced in the next lesson) and of course weak pull-ups.

Like TRIS, OPTION is not directly addressable, is write-only, and can only be written using a special

instruction: „option‟ – “load option register”.

By default (after a power-on or reset), GPPU = 1 and the internal pull-ups are disabled.

To enable internal pull-ups, clear GPPU .

Assuming no other options are being set (leaving all the other bits at the default value of „1‟), internal pull-

ups are enabled by:

 movlw b'10111111' ; enable internal pull-ups

 ; -0------ pullups enabled (/GPPU = 0)

 option

Note the way that this has been commented: the line with „-0------‟ makes it clear that only bit 6 (GPPU)

is relevant to enabling or disabling the internal pull-ups, and that they are enabled by clearing this bit.

In the PIC12F508/9, internal pull-ups are only available on GP0, GP1 and GP3.

Internal pull-ups on the baseline PICs are not selectable by pin; they are either all on, or all off. However, if

a pin is configured as an output, the internal pull-up is disabled for that pin (preventing excess current being

drawn).

If you want to test that the internal pull-ups are

working, you will need to remove the PIC from the low

pin count demo board, and place it in your own circuit,

with no external pull-up resistor.

For example, you could build it using prototyping

breadboard, as illustrated on the left.

Note that this minimal circuit, diagrammed above and

illustrated here, does not include a current-limiting

resistor between GP3 and the pushbutton. As

discussed earlier, that‟s generally ok, but to be safe and

protect against such things as electrostatic discharge,

it‟s good practice to include a current limiting resistor,

of around 1 kΩ, between the PIC pin and the

pushbutton.

But as this example illustrates, functional PIC-based

circuits really can need very few external components!

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

OPTION GPWU GPPU T0CS T0SE PSA PS2 PS1 PS0

© Gooligum Electronics 2008 www.gooligum.com.au

Baseline PIC Assembler, Lesson 4: Reading Switches Page 16

Complete program

Here‟s the complete “Toggle an LED” program, illustrating how to read and debounce a simple switch

connected through an internal pull-up:

;**

; *

; Filename: BA_L4-Toggle_LED-int_pu.asm *

; Date: 16/9/07 *

; File Version: 1.0 *

; *

; Author: David Meiklejohn *

; Company: Gooligum Electronics *

; *

;**

; *

; Architecture: Baseline PIC *

; Processor: 12F508/509 *

; *

;**

; *

; Files required: none *

; *

;**

; *

; Description: Lesson 4, example 5 *

; *

; Demonstrates use of internal pull-ups plus debouncing *

; *

; Toggles LED when pushbutton is pressed (low) then released (high) *

; Uses counting algorithm for switch debounce *

; *

;**

; *

; Pin assignments: *

; GP1 - LED *

; GP3 - pushbutton switch *

; *

;**

 list p=12F509

 #include <p12F509.inc>

 ; int reset, no code protect, no watchdog, 4Mhz int clock

 __CONFIG _MCLRE_OFF & _CP_OFF & _WDT_OFF & _IntRC_OSC

;***** VARIABLE DEFINITIONS

 UDATA_SHR

sGPIO res 1 ; shadow copy of GPIO

 UDATA

db_cnt res 1 ; debounce counter

dc1 res 1 ; delay counter

;**

RESET CODE 0x000 ; effective reset vector

 movwf OSCCAL ; update OSCCAL with factory cal value

© Gooligum Electronics 2008 www.gooligum.com.au

Baseline PIC Assembler, Lesson 4: Reading Switches Page 17

;***** MAIN PROGRAM

;***** Initialisation

start

 movlw b'10111111' ; enable internal pull-ups

 ; -0------ pullups enabled (/GPPU = 0)

 option

 clrf GPIO ; start with LED off

 clrf sGPIO ; update shadow

 movlw b'111101' ; configure GP1 (only) as an output

 tris GPIO ; (GP3 is an input)

;***** Main loop

loop

 banksel db_cnt ; select data bank for this section

db_dn ; wait until button pressed (GP3 low), debounce by counting:

 movlw .13 ; max count = 10ms/768us = 13

 movwf db_cnt

 clrf dc1

dn_dly incfsz dc1,f ; delay 256x3 = 768us.

 goto dn_dly

 btfsc GPIO,3 ; if button up (GP3 set),

 goto db_dn ; restart count

 decfsz db_cnt,f ; else repeat until max count reached

 goto dn_dly

 ; toggle LED on GP1

 movf sGPIO,w

 xorlw b'000010' ; toggle shadow register

 movwf sGPIO

 movwf GPIO ; write to port

db_up ; wait until button released (GP3 high), debounce by counting:

 movlw .13 ; max count = 10ms/768us = 13

 movwf db_cnt

 clrf dc1

up_dly incfsz dc1,f ; delay 256x3 = 768us.

 goto up_dly

 btfss GPIO,3 ; if button down (GP3 clear),

 goto db_up ; restart count

 decfsz db_cnt,f ; else repeat until max count reached

 goto up_dly

 ; repeat forever

 goto loop

 END

That‟s it for reading switches for now. There‟s plenty more to explore, of course, such as reading keypads

and debouncing multiple switch inputs – topics to explore later.

But in the next lesson we‟ll look at the PIC12F508/9‟s timer module.

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_5.pdf

	Introduction to PIC Programming
	Baseline Architecture and Assembly Language
	Lesson 4: Reading Switches
	The Circuit
	Interference from

	Reading the Switch
	Debouncing
	Hardware debouncing
	Software debouncing
	Debounce delay
	Counting algorithm

	Internal Pull-ups
	Complete program

