
© Gooligum Electronics 2008 www.gooligum.com.au

Baseline PIC Assembler, Lesson 6: Assembler Directives and Macros Page 1

Introduction to PIC Programming

Baseline Architecture and Assembly Language

by David Meiklejohn, Gooligum Electronics

Lesson 6: Assembler Directives and Macros

As the programs presented in these tutorials are becoming longer, it‟s appropriate to take a look at some of

the facilities that MPASM (the Microchip PIC assembler) provides to simplify the process of writing and

maintaining code.

This lesson covers:

 Arithmetic and bitwise operators

 Text substitution with #define

 Defining constants with equ or constant

 Conditional assembly using if / else / endif, ifdef and ifndef

 Outputting warning and error messages

 Assembler macros

Each of these topics is illustrated by making use of it in code from previous tutorials in this series.

Arithmetic Operators

MPASM supports the following arithmetic operators:

negate -

multiply *

divide /

modulus %

add +

subtract -

Precedence is in the traditional order, as above.

For example, 2 + 3 * 4 = 2 + 12 = 14.

To change the order of precedence, use parentheses: (and).

For example, (2 + 3) * 4 = 5 * 4 = 20.

Note: These calculations take place during the assembly process, before any code is generated.

They are used to calculate constant values which will be included in the code to be assembled.

They do not generate any PIC instructions.

© Gooligum Electronics 2008 www.gooligum.com.au

Baseline PIC Assembler, Lesson 6: Assembler Directives and Macros Page 2

These arithmetic operators are useful in showing how a value has been derived, making it easier to

understand the code and to make changes.

For example, consider this code from lesson 2:

 ; delay 500ms

 movlw .244 ; outer loop: 244 x (1023 + 1023 + 3) + 2

 movwf dc2 ; = 499,958 cycles

 clrf dc1 ; inner loop: 256 x 4 - 1

dly1 nop ; inner loop 1 = 1023 cycles

 decfsz dc1,f

 goto dly1

dly2 nop ; inner loop 2 = 1023 cycles

 decfsz dc1,f

 goto dly2

 decfsz dc2,f

 goto dly1

Where does the value of 244 come from? It is the number of outer loop iterations needed to make 500 ms.

To make this clearer, we could change the comments to:

 ; delay 500ms

 movlw .244 ; outer loop: #iterations =

 movwf dc2 ; 500ms/(1023+1023+3)us/loop = 244

Or, instead of writing the constant „244‟ directly, write it as an expression:

 ; delay 500ms

 movlw .500000/(.1023+.1023+.3) ; number of outer loop iterations

 movwf dc2 ; for 500ms delay

If you‟re using mainly decimal values in your expressions, as here, you may wish to change the default radix

to decimal, to avoid having to add a „.‟ before each decimal value. As discussed in lesson 2, that‟s not

necessarily a good idea; if your code assumes that some particular default radix has been set, you need to be

very careful if you copy that code into another program, which may have a different default radix. But, if

you‟re prepared to take the risk, add the „radix‟ directive near the start of the program. For example:

 radix dec

The valid radix values are „hex‟ for hexadecimal (base 16), „dec‟ for decimal (base 10) and „oct‟ for octal

(base 8). The default radix is hex.

With the default radix set to decimal, this code fragment can be written as:

 ; delay 500ms

 movlw 500000/(1023+1023+3) ; # outer loop iterations for 500ms

 movwf dc2

Defining Constants

Programs often contain values which may need to be tuned or changed later, particularly during

development. When a change needs to be made, finding these values in the code can difficult. And making

changes can be error-prone if the same value (or another value derived from the value being changed) occurs

more than once in the code.

To make the code more maintainable, each constant value should be defined only once, near the start of the

program, where it is easy to find and change.

A good example is the reaction timer developed in lesson 5, where “success” was defined as pressing a

pushbutton less than 200 ms after a LED was lit. But what if, during testing, we found that 200 ms is

unrealistically short? Or too long?

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_2.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_2.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_5.pdf

© Gooligum Electronics 2008 www.gooligum.com.au

Baseline PIC Assembler, Lesson 6: Assembler Directives and Macros Page 3

To change this maximum reaction time, you‟d need to find and then modify this fragment of code:

 ; check elapsed time

btn_dn movlw .25 ; if time < 200ms (25x8ms)

 subwf cnt8ms,w

 btfss STATUS,C

 bsf GPIO,1 ; turn on success LED

To make this easier to maintain, we could define the maximum reaction time as a constant, at the start of the

program.

This can be done using the „equ‟ (short for “equate”) directive, as follows:

MAXRT equ .200 ; Maximum reaction time in ms

Alternatively, you could use the „constant‟ directive:

constant MAXRT=.200 ; Maximum reaction time in ms

The two directives are equivalent. Which you choose to use is simply a matter of style.

„equ‟ is more commonly found in assemblers, and perhaps because it is more familiar, most people use it.

Personally, I prefer to use „constant‟, mainly because I like to think of any symbol placed on the left hand

edge (column 1) of the assembler source as being a label for a program or data register address, and I prefer

to differentiate between address labels and constants to be used in expressions. But it‟s purely your choice.

However you define this constant, it can be referred to later in your code, for example:

 ; check elapsed time

btn_dn movlw MAXRT/8 ; if time < max reaction time (8ms/count)

 subwf cnt8ms,w

 btfss STATUS,C

 bsf GPIO,1 ; turn on success LED

Note how constants can be usefully included in arithmetic expressions. In this way, the constant can be

defined simply in terms of real-world quantities (e.g. ms), making it readily apparent how to change it to a

new value (e.g. 300 ms), while arithmetic expressions are used to convert that into a quantity that matches

the program‟s logic. And if that logic changes later (say, counting by 16 ms instead of 8 ms increments),

then only the arithmetic expression needs to change; the constant can remain defined in the same way.

Text Substitution

As discussed above, the ability to define numeric constants is very useful. It is also very useful to be able to

define “text constants”, where a text string is substituted into the assembler source code.

Text substitution is commonly used to refer to I/O pins by a descriptive label. This makes your code more

readable, and easier to update if pin assignments change later.

Why would pin assignments change? Whether you design your own printed circuit boards, or layout your

circuit on prototyping board, swapping pins around can often simplify the physical circuit layout. That‟s one

of the great advantages of designing with microcontrollers; as you layout your design, you can go back and

modify the code to simplify that layout, perhaps repeating that process a number of times.

For example, consider again the reaction timer from lesson 5. The I/O pins were assigned as follows:

; Pin assignments: *

; GP1 - success LED *

; GP2 - start LED *

; GP3 - pushbutton *

These assignments are completely arbitrary; the LEDs could be on any pin other than GP3 (which is input

only), while the pushbutton could be on any unused pin.

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_5.pdf

© Gooligum Electronics 2008 www.gooligum.com.au

Baseline PIC Assembler, Lesson 6: Assembler Directives and Macros Page 4

One way of defining these pins would be to use numeric constants:

 constant nSTART=2 ; Start LED

 constant nSUCCESS=1 ; Success LED

constant nBUTTON=3 ; pushbutton

(The „n‟ prefix used here indicates that these are numeric constants; this is simply a convention, and you can

choose whatever naming style works for you.)

They would then be referenced in the code, as follows:

 bsf GPIO,nSTART ; turn on start LED

w_tmr0 btfss GPIO,nBUTTON ; check for button press (low)

 bsf GPIO,nSUCCESS ; turn on success LED

A significant problem with this approach is that larger PICs (i.e. most of them!) have more than one port.

Instead of GPIO, larger PICs have ports named PORTA, PORTB, PORTC and so on. What if you moved

an input or output from PORTA to PORTC? The above approach, using numeric constants, wouldn‟t work,

because you‟d have to go through your code and change all the PORTA references to PORTC.

This problem can be solved using text substitution, using the „#define‟ directive, as follows:

 #define START GPIO,2 ; Start LED

#define SUCCESS GPIO,1 ; Success LED

#define BUTTON GPIO,3 ; pushbutton

These definitions are then referenced later in the code, as shown:

 bsf START ; turn on start LED

w_tmr0 btfss BUTTON ; check for button press (low)

 bsf SUCCESS ; turn on success LED

Note that there are no longer any references to GPIO in the main body of the code. If you later move this

code to a PIC with more ports, you only need to update the definitions at the start. Of course, you also need

to modify the corresponding port initialisation code, such as „tris‟ instructions, normally located at the

start of the program.

Bitwise Operators

We‟ve seen that operations on binary values are fundamental to PIC microcontrollers: setting and clearing

individual bits, flipping bits, testing the status of bits and rotating the bits in registers. Many configuration

options are specified as a collection of bits (or flags) which are assembled into a byte or word; for example,

the „__CONFIG‟ directive and the „option‟ instruction.

To facilitate operations on bits, MPASM provides the following bitwise operators:

compliment ~

 left shift <<

 right shift >>

 bitwise AND &

 bitwise exclusive OR ^

 bitwise inclusive OR |

Precedence is in the order listed above.

As for arithmetic operators, parentheses are used to change the order of precedence: „(‟ and „)‟.

© Gooligum Electronics 2008 www.gooligum.com.au

Baseline PIC Assembler, Lesson 6: Assembler Directives and Macros Page 5

We‟ve seen an example of the bitwise AND operator being used in every program so far:

 ; int reset, no code protect, no watchdog, 4MHz int clock

__CONFIG _MCLRE_OFF & _CP_OFF & _WDT_OFF & _IntRC_OSC

These symbols are defined in the „p12F509.inc‟ include file as follows:

;==

;

; Configuration Bits

;

;==

_MCLRE_ON EQU H'0FFF'

_MCLRE_OFF EQU H'0FEF'

_CP_ON EQU H'0FF7'

_CP_OFF EQU H'0FFF'

_WDT_ON EQU H'0FFF'

_WDT_OFF EQU H'0FFB'

_LP_OSC EQU H'0FFC'

_XT_OSC EQU H'0FFD'

_IntRC_OSC EQU H'0FFE'

_ExtRC_OSC EQU H'0FFF'

The „equ‟ directive is described above; you can see that these are simply symbols for numeric constants.

In binary, the values in the „__CONFIG‟ directive above are:

_MCLRE_OFF H'0FEF' = 1111 1110 1111

_CP_OFF H'0FFF' = 1111 1111 1111

_WDT_OFF H'0FFB' = 1111 1111 1011

_IntRC_OSC H'0FFE' = 1111 1111 1110

ANDing these together gives: 1111 1110 1010

So the directive above is equivalent to:

__CONFIG b'111111101010'

For each of these configuration bit symbols, where a bit in the definition is „0‟, it has the effect of setting the

corresponding bit in the configuration word to „0‟, because either „0‟ or „1‟ ANDed with „0‟ equals „0‟.

The 12-bit configuration word in the PIC12F508/509 is as shown:

Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

- - - - - - - MCLRE CP WDTE FOSC1 FOSC0

These configuration options were described briefly in lesson 1. Recapping:

MCLRE enables the external processor reset, or “master clear”, on pin 4. Clearing it allows GP3 to be used

as an input.

CP disables code protection. Clearing CP protects your code from being read by PIC programmers.

WDTE enables the watchdog timer, which is used to reset the processor if it crashes. For more details, see

lesson 7. Clearing WDTE to disables the watchdog timer.

The FOSC bits set the clock, or oscillator, configuration; FOSC<1:0> = 10 specifies the internal RC

oscillator. The other oscillator configurations are described in lesson 7.

Given this, to configure the PIC12F509 for internal reset (GP3 as an input), no code protection, no watchdog

timer and the internal RC oscillator, the lower five bits of the configuration word must be set to 01010.

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_1.pdf

© Gooligum Electronics 2008 www.gooligum.com.au

Baseline PIC Assembler, Lesson 6: Assembler Directives and Macros Page 6

That‟s the same pattern of bits produced by the __CONFIG directive, above (the value of the upper seven

bits is irrelevant, as they are not used), showing that ANDing together the symbols in the Microchip-

provided include file gives the correct result. Using the symbols is simpler, and safer; it‟s easy to mistype a

long binary value, leading to a difficult-to-debug processor configuration error. If you mistype a symbol, the

assembler will tell you, making it easy to correct the mistake.

It is also useful (clearer and less error-prone) to be able to use symbols instead of binary numbers when

setting bits in special-function registers, such as OPTION.

The bits in the OPTION register are defined in the „p12F509.inc‟ include file as follows:

NOT_GPWU EQU H'0007'

NOT_GPPU EQU H'0006'

T0CS EQU H'0005'

T0SE EQU H'0004'

PSA EQU H'0003'

PS2 EQU H'0002'

PS1 EQU H'0001'

PS0 EQU H'0000'

Unlike the definitions used for the configuration bits, these symbols define a bit position, not a pattern. It

tells us, for example, that T0CS is bit 5. To set only bit 5, normally we‟d use something like:

 movlw b'00100000' ; select counter mode: TOCS=1

 option ; (set bit 5 in OPTION)

But note that the binary constant b’00100000’ is a „1‟ shifted right five times, and so can be represented

by the expression “1<<5”, using the binary right-shift operator „<<‟.

That means that the following code can be used instead of the above:

 movlw 1<<T0CS ; select counter mode: TOCS=1

 option

This works because the symbol „T0CS‟ is defined in the include file to be equal to „5‟.

This code is clearer, needing fewer comments, and it is harder to make a mistake, as mistyping a symbol is

likely to be picked up by the assembler, while mistyping a binary constant (say getting the „1‟ in the wrong

position) is likely to be missed.

Typically a number of bits need to be set at the same time. To do this, simply bitwise-OR the expressions

together. For example, the crystal-based LED flasher code from lesson 5 included:

 movlw b'11110110' ; configure Timer0:

 ; --1----- counter mode (T0CS = 1)

 ; ----0--- prescaler assigned to Timer0 (PSA = 0)

 ; -----110 prescale = 128 (PS = 110)

 option ; -> increment at 256 Hz with 32.768 kHz input

This can be replaced by:

 ; configure Timer0

 movlw 1<<T0CS|0<<PSA|b'110'

 ; counter mode (T0CS = 1)

 ; prescaler assigned to Timer0 (PSA = 0)

 ; prescale = 128 (PS = 110)

 option ; -> increment at 256 Hz with 32.768 kHz input

Including „0<<PSA‟ in the expression does nothing, since a zero right-shifted any number of times is still

zero, and ORing zero into any expression has no effect. But it makes it explicit that we are clearing PSA.

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_5.pdf

© Gooligum Electronics 2008 www.gooligum.com.au

Baseline PIC Assembler, Lesson 6: Assembler Directives and Macros Page 7

In this application, we don‟t care what the GPWU , GPPU and T0SE bits are set to, so they are not

included in the expression. And where a bit field (such as PS<2:0>) is most clearly expressed as a binary

pattern, it can be ORed into the expression as a binary constant, as shown.

Macros

We‟ve seen in lesson 3 that, if we wish to reuse the same piece of code a number of times in a program, it

often makes sense to place that code into a subroutine and to call the subroutine from the main program.

But that‟s not always appropriate, or even possible. The subroutine call and return is an overhead that takes

some time; only four instruction cycles, but in timing-critical pieces of code, it may not be justifiable. A

more significant problem is that the baseline PICs have only two stack registers, meaning that you must be

very careful when nesting subroutine calls, or else the stack will overflow and your subroutine won‟t return

to the right place. It‟s usually not worth using up a stack level, just to avoid repeating a short piece of code.

Another problem with subroutines is that, as we saw in lesson 3, to pass parameters to them, you need to load

the parameters into registers – an overhead that leads to longer code, perhaps negating the space-saving

advantage of using a subroutine, for small pieces of code. And loading parameters into registers, before

calling a subroutine, isn‟t very readable. It would be nicer to be able to simply list the parameters on a single

line, as part of the subroutine call.

Macros address these problems, and are often appropriate where a subroutine is not. A macro is a sequence

of instructions that is inserted (or expanded) into the source code by the assembler, prior to assembly.

Here‟s a simple example. Lesson 3 introduced a „delay10‟ subroutine, which took as a parameter in W a

number of multiples of 10ms to delay. So to delay for 200 ms, we had:

 movlw .20 ; delay 20 x 10ms = 200ms

 call delay10

This was used in a program which flashed a LED with a 20% duty cycle: on for 200 ms, then off for 800 ms.

Rewritten a little from the code presented in lesson 3, the main loop looks like this:

loop

 bsf FLASH ; turn on LED

 movlw .20 ; stay on for 0.2s:

 pagesel delay10

 call delay10 ; delay 20 x 10ms = 200ms

 bcf FLASH ; turn off LED

 movlw .80 ; stay off for 0.8s:

 call delay10 ; delay 80 x 10ms = 800ms

 pagesel $

 goto loop ; repeat forever

It would be nice to be able to simply write something like „DelayMS 200‟ for a 200 ms delay. We can do

that by defining a macro, as follows:

DelayMS MACRO ms ; delay time in ms

 movlw ms/.10 ; divide by 10 to pass to delay10 routine

 pagesel delay10

 call delay10

 pagesel $

 ENDM

Note: The purpose of a macro is to make the source code more compact; unlike a subroutine, it

does not make the resultant object code any smaller. The instructions within a macro are

expanded into the source code, every time the macro is called.

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_3.pdf

© Gooligum Electronics 2008 www.gooligum.com.au

Baseline PIC Assembler, Lesson 6: Assembler Directives and Macros Page 8

This defines a macro called „DelayMS‟, which takes a single parameter: „ms‟, the delay time in

milliseconds. Parameters are referred to within the macro in the same way as any other symbol, and can be

used in expressions, as shown.

A macro definition consists of a label (the macro‟s name), the „MACRO‟ directive, and a comma-separated

list of symbols, or arguments, used to pass parameters to the macro, all on one line. It is followed by a

sequence of instructions and/or assembler directives, finishing with the „ENDM‟ directive.

When the source code is assembled, the macro‟s instruction sequence is inserted into the code, with the

arguments replaced by the parameters that were passed to the macro.

That may sound complex, but using a macro is easy. Having defined the „DelayMS‟ macro, as above, it can

be called from the main loop, as follows:

loop

 bsf FLASH ; turn on LED

 DelayMS .200 ; stay on for 200ms

 bcf FLASH ; turn off LED

 DelayMS .800 ; stay off for 800ms

 goto loop ; repeat forever

We could describe this „DelayMS‟ macro as a wrapper, making the „delay10‟ subroutine easier to use.

Note that the pagesel directives have been included as part of the macro, first to select the correct page for

the „delay10‟ subroutine, and then to select the current page again after the subroutine call. That makes the

macro transparent to use; there is no need for pagesel directives before or after calling it.

As a more complex example, consider the debounce code presented in lesson 5:

wait_dn clrf TMR0 ; reset timer

chk_dn btfsc GPIO,3 ; check for button press (GP3 low)

 goto wait_dn ; continue to reset timer until button down

 movf TMR0,w ; has 10ms debounce time elapsed?

 xorlw .157 ; (157=10ms/64us)

 btfss STATUS,Z ; if not, continue checking button

 goto chk_dn

If you had a number of buttons to debounce in your application, you would want to use code very similar to

this, multiple times. But since there is no way of passing a reference to the pin to debounce (e.g. „GPIO,3‟)

as a parameter to a subroutine, it‟s necessary to use a macro to achieve this.

For example, a debounce macro could be defined as follows:

; Debounce switch on given input port,pin

; Waits for switch to be 'high' continuously for 10ms

;

; Uses: TMR0 Assumes: TMR0 running at 256us/tick

;

DbnceHi MACRO port,pin

 local start,wait,DEBOUNCE

 variable DEBOUNCE=.10*.1000/.256 ; debounce count = 10ms/(256us/tick)

 pagesel $; select current page for gotos

start clrf TMR0 ; button down so reset timer (counts "up" time)

wait btfss port,pin ; wait for switch to go high (=1)

 goto start

 movf TMR0,w ; has switch has been up continuously for

 xorlw DEBOUNCE ; debounce time?

 btfss STATUS,Z ; if not, keep checking that it is still up

 goto wait

 ENDM

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_5.pdf

© Gooligum Electronics 2008 www.gooligum.com.au

Baseline PIC Assembler, Lesson 6: Assembler Directives and Macros Page 9

There are a few things to note about this macro definition, starting with the comments. As with subroutines,

you‟ll eventually build up a library of useful macros, which you might keep together in an include file, such

as „stdmacros.inc‟ (which you would reference using the #include directive, instead of copying the

macros into your code.) When documenting a macro, it‟s important to note any resources (such as timers)

used by the macro, and any initialisation that has to have been done before the macro is called.

The macro is called „DbnceHi‟ instead of „DbnceUp‟ because it‟s waiting for a pin to be consistently high.

For some switches, that will correspond to “up”, but not in every case. Using terms such as “high” instead of

“up” is more general, and thus more reusable.

The „local‟ directive declares symbols (address labels and variables) which are only used within the

macro. If you call a macro more than once, you must declare any address labels within the macro as “local”,

or else the assembler will complain that you have used the same label more than once. Declaring macro

labels as local also means that you don‟t need to worry about whether those labels are used within the main

body of code. A good example is „start‟ in the definition above. There is a good chance that there will be

a „start‟ label in the main program, but that doesn‟t matter, as the scope of a label declared to be “local” is

limited to the macro it is defined in.

The „variable‟ directive is very similar to the „constant‟ directive, introduced earlier. The only

difference is that the symbol it defines can be updated later. Unlike a constant, the value of a variable can be

changed after it has been defined. Other than that, they can be used interchangeably.

In this case, the symbol „DEBOUNCE‟ is being defined as a variable, but is used as a constant. It is never

updated, being used to make it easy to change the debounce period from 10 ms if required, without having to

find the relevant instruction within the body of the macro (and note the way that an arithmetic expression has

been used, to make it easy to see how to set the debounce to some other number of milliseconds).

So why define „DEBOUNCE‟ as a variable, instead of a constant? If it was defined as a constant, there would

potentially be a conflict if there was another constant called „DEBOUNCE‟ defined somewhere else in the

program. But surely declaring it to be “local” would avoid that problem? Unfortunately, the „local‟

directive only applies to labels and variables, not constants. And that‟s why „DEBOUNCE‟ is declared as a

“local variable”. Its scope is limited to the macro and will not affect anything outside it. You can‟t do that

with constants.

Finally, note that the macro begins with a „pagesel $‟ directive. That is placed there because we cannot

assume that the page selection bits are set to the current page when the macro is called. If the current page

was not selected, the „goto‟ commands within the macro body would fail; they would jump to a different

page. That illustrates another difference between macros and subroutines: when a subroutine is called, the

page the subroutine is on must have been selected (or else it couldn‟t have been called successfully), so any

„goto‟ commands within the subroutine will work. You can‟t safely make that assumption for macros.

Complete program

The following program demonstrates how this “debounce” macro is used in practice.

It is based on the “toggle an LED” program included in lesson 5, but the press of the pushbutton is not

debounced, only the release. It is not normally necessary to debounce both actions – although you may have

to think about it a little to see why!

Using the macro doesn‟t make the code any shorter, but the main loop is much simpler:

;**

; Description: Lesson 6, example 5 *

; Toggles LED when button is pressed *

; *

; Demonstrates use of macro defining Timer0-based debounce routine *

;**

 list p=12F509

 #include <p12F509.inc>

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_5.pdf

© Gooligum Electronics 2008 www.gooligum.com.au

Baseline PIC Assembler, Lesson 6: Assembler Directives and Macros Page 10

 ; int reset, no code protect, no watchdog, 4MHz int clock

 __CONFIG _MCLRE_OFF & _CP_OFF & _WDT_OFF & _IntRC_OSC

; pin assignments

 constant nLED=1 ; indicator LED on GP1

 #define BUTTON GPIO,3 ; pushbutton on GP3

;***** MACROS

; Debounce switch on given input port,pin

; Waits for switch to be 'high' continuously for 10ms

;

; Uses: TMR0 Assumes: TMR0 running at 256us/tick

;

DbnceHi MACRO port,pin

 local start,wait,DEBOUNCE

 variable DEBOUNCE=.10*.1000/.256 ; debounce count = 10ms/(256us/tick)

 pagesel $; select current page for gotos

start clrf TMR0 ; button down so reset timer (counts "up" time)

wait btfss port,pin ; wait for switch to go high (=1)

 goto start

 movf TMR0,w ; has switch has been up continuously for

 xorlw DEBOUNCE ; debounce time?

 btfss STATUS,Z ; if not, keep checking that it is still up

 goto wait

 ENDM

;***** VARIABLE DEFINITIONS

 UDATA_SHR

sGPIO res 1 ; shadow copy of GPIO

;**

RESET CODE 0x000 ; effective reset vector

 movwf OSCCAL ; update OSCCAL with factory cal value

;***** MAIN PROGRAM

;***** Initialisation

start

 movlw ~(1<<nLED) ; configure LED pin (only) as output

 tris GPIO

 movlw b'11010111' ; configure Timer0:

 ; --0----- timer mode (T0CS = 0)

 ; ----0--- prescaler assigned to Timer0 (PSA = 0)

 ; -----111 prescale = 256 (PS = 111)

 option ; -> increment every 256 us

 clrf GPIO ; start with LED off

 clrf sGPIO ; update shadow

;***** Main loop

loop

wait_dn btfsc BUTTON ; wait for button press (=0)

 goto wait_dn

 movf sGPIO,w ; toggle LED

 xorlw 1<<nLED ; using shadow register

 movwf sGPIO

 movwf GPIO ; write to port

© Gooligum Electronics 2008 www.gooligum.com.au

Baseline PIC Assembler, Lesson 6: Assembler Directives and Macros Page 11

 DbnceHi BUTTON ; wait until button released

 goto loop ; repeat forever

 END

Conditional Assembly

We‟ve seen how the processor include files, such as „p12F509.inc‟, define a number of symbols that allow

you to refer to registers and flags by name, instead of numeric value.

While looking at the „p12F509.inc‟ file, you may have noticed these lines:

 IFNDEF __12F509

 MESSG "Processor-header file mismatch. Verify selected processor."

 ENDIF

This is an example of conditional assembly, where the actions performed by the assembler (outputting

messages and generating code) depend on whether specific conditions are met.

When the processor type is specified by the „list p=‟ directive, or selected in MPLAB, a symbol

specifying the processor is defined; for the PIC12F509, the symbol is „__12F509‟. This is useful because

the assembler can be made to perform different actions depending on which processor symbol has been

defined.

In this case, the idea is to check that the correct processor include file is being used. If you include the

include file for the wrong processor, you‟ll almost certainly have problems. This code checks for that.

The „IFNDEF‟ directive instructs the assembler to assemble the following block of code if the specified

symbol has not been defined.

The „ENDIF‟ directive marks the end of the block of conditionally-assembled code.

In this case, everything between „IFNDEF‟ and „ENDIF‟ is assembled if the symbol „__12F509‟ has not

been defined. And that will only be true if a processor other than the PIC12F509 has been selected.

The „MESSG‟ directive tells the assembler to print the specified message in the MPLAB output window.

This message is only informational; it‟s useful for providing information about the assembly process or for

issuing warnings that do not necessarily mean that assembly has to stop.

So, this code tests that the correct processor has been selected and, if not, warns the user about the mismatch.

Similar to „IFNDEF‟, there is also an „IFDEF‟ directive which instructs the assembler to assemble a block

of code if the specified symbol has been defined.

A common use of „IFDEF‟ is when debugging, perhaps to disable parts of the program while it is being

debugged. Or you might want to use a different processor configuration, say with code protection and the

watchdog timer enabled. For example:

;***** Configuration

 #define DEBUG

 ifdef DEBUG

 ; int reset, no code protect, no watchdog, 4MHz int clock

 __CONFIG _MCLRE_OFF & _CP_OFF & _WDT_OFF & _IntRC_OSC

 else

 ; int reset, code protect on, watchdog on, 4MHz int clock

 __CONFIG _MCLRE_OFF & _CP_ON & _WDT_ON & _IntRC_OSC

endif

© Gooligum Electronics 2008 www.gooligum.com.au

Baseline PIC Assembler, Lesson 6: Assembler Directives and Macros Page 12

If the „DEBUG‟ symbol has been defined (it doesn‟t have to be set equal to anything, just defined), the first

__CONFIG directive is assembled, turning off code protection and the watchdog timer.

The „ELSE‟ directive marks the beginning of an alternative block of code, to be assembled if the previous

conditional block was not selected for assembly.

That is, if the „DEBUG‟ symbol has not been defined, the second __CONFIG directive is assembled, turning

on code protection and the watchdog timer.

When you have finished debugging, you can either comment out the „#define DEBUG‟ directive, or

change „DEBUG‟ to another symbol, such as „RELEASE‟. The debugging code will now no longer be

assembled.

In many cases, simply testing whether a symbol exists is not enough. You may want the assembler to

assemble different sections of code and/or issue different messages, depending on the value of a symbol, or

of an expression containing perhaps a number of symbols.

As an example, suppose your code is used to support a number of hardware configurations, or revisions. At

some point the printed circuit board may have been revised, requiring different pin assignments. In that case,

you could use a block of code similar to:

;***** Configuration

 constant REV='A' ; hardware revision

; pin assignments

 IF REV=='A' ; pin assignments for REV A:

 #define LED GPIO,1 ; indicator LED on GP1

 #define BUTTON GPIO,3 ; pushbutton on GP3

 ENDIF

 IF REV=='B' ; pin assignments for REV B:

 #define LED GPIO,2 ; indicator LED on GP2

 #define BUTTON GPIO,5 ; pushbutton on GP5

 ENDIF

 IF REV!='A' && REV!='B'

 ERROR "Revision must be 'A' or 'B'"

ENDIF

This code allows for two hardware revisions, selected by setting the constant „REV‟ equal to „A‟ or „B‟.

The „IF expr‟ directive instructs the assembler to assemble the following block of code if the expression

expr is true. Normally a logical expression (such as a test for equality) is used with the „IF‟ directive, but

arithmetic expressions can also be used, in which case an expression that evaluates to zero is considered to

be logically false, while any non-zero value is considered to be logically true.

MPASM supports the following logical operators:

not (logical compliment) !

 greater than or equal to >=

 greater than >

 less than <

 less than or equal to <=

 equal to ==

 not equal to !=

 logical AND &&

 logical OR ||

Precedence is in the order shown.

© Gooligum Electronics 2008 www.gooligum.com.au

Baseline PIC Assembler, Lesson 6: Assembler Directives and Macros Page 13

As for arithmetic and bitwise operators, parentheses are used to change the order of precedence: „(‟ and „)‟.

Note that the test for equality is two equals signs; „==‟, not „=‟.

In the code above, setting „REV‟ to „A‟ means that the first pair of #define directives will be executed,

while setting „REV‟ to „B‟ executes the second pair. But what if „REV‟ was set to something other than „A‟

or „B‟? Then neither set of pin assignments would be selected and the symbols „LED‟ and „BUTTON‟ would

be left undefined. The rest of the code would not assemble correctly, so it is best to check for that error

condition.

This error condition can be tested for, using the more complex logical expression:

REV!='A' && REV!='B'

Incidentally, this can be rewritten equivalently
1
 as:

!(REV=='A' || REV=='B')

You can of course use whichever form seems clearest to you.

The „ERROR‟ directive does essentially the same thing as „MESSG‟, but instead of printing the specified

message and continuing, „ERROR‟ will make the progress bar that appears during assembly turn red, and the

assembly process will halt.

The „IF‟ directive is also very useful for checking that macros have been called correctly, particularly for

macros which may be reused in other programs.

For example, consider the delay macro defined earlier:

DelayMS MACRO ms ; delay time in ms

 movlw ms/.10 ; divide by 10 to pass to delay10 routine

 call delay10

 ENDM

The maximum delay allowed is 2.55 s, because all the registers, including W, are 8-bit and so can only hold

numbers up to 255. If you try calling „DelayMS‟ with an argument greater than 2550, the assembler will

warn you about “Argument out of range”, but it will carry on anyway, using the least significant 8 bits of

„ms/.10‟. That‟s not a desirable behaviour. It would be better if the assembler reported an error and

halted, if the macro is called with an argument that is out of range.

That can be done as follows:

DelayMS MACRO ms ; delay time in ms

 IF ms>.2550

 ERROR "Maximum delay time is 2550ms"

 ENDIF

 movlw ms/.10 ; divide by 10 to pass to delay10 routine

 call delay10

 ENDM

By testing that parameters are within allowed ranges like this, you can make your code more robust.

1
 This equivalence is known as De Morgan‟s theorem.

© Gooligum Electronics 2008 www.gooligum.com.au

Baseline PIC Assembler, Lesson 6: Assembler Directives and Macros Page 14

MPASM offers many more advanced facilities that can make your life as a PIC assembler programmer

easier, but that‟s enough for now. Other MPASM directives will be introduced in future lessons, as

appropriate.

The next lesson covers the 12F508/9‟s sleep mode, watchdog timer, and clock (oscillator) options.

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_7.pdf

	Introduction to PIC Programming
	Baseline Architecture and Assembly Language
	Lesson 6: Assembler Directives and Macros
	Arithmetic Operators
	Defining Constants
	Text Substitution
	Bitwise Operators
	Macros
	Complete program

	Conditional Assembly

