
© Gooligum Electronics 2008 www.gooligum.com.au

Baseline PIC Assembler, Lesson 7: Sleep Mode, Watchdog Timer and Clock Options Page 1

Introduction to PIC Programming

Baseline Architecture and Assembly Language

by David Meiklejohn, Gooligum Electronics

Lesson 7: Sleep Mode, the Watchdog Timer and Clock Options

We‟ve now covered, at least at an introductory level, the major features of the PIC12F508/509 (admittedly,

one of the simplest of the “modern” PICs; only the PIC10F200 and PIC10F202 are more limited), including

digital input, output, and using the Timer0 module as either a timer or counter.

That‟s enough to build a surprising number of applications, but these MCUs have a few other features which

can be quite useful. These are covered in chapter 7 of the PIC12F508/509/16F505 data sheet, titled “Special

Features of the CPU”. Although you should refer to the latest data sheet for the full details, this lesson will

introduce the following “special” (and very useful) features:

 Sleep mode (power down)

 Wake-up on change (power up)

 The watchdog timer

 Oscillator (clock) configurations

Sleep Mode

The material covered so far in these tutorials should allow you to design a simple project such as the

Gooligum Electronics “Toy Traffic Lights” kit: lighting LEDs, responding to and debouncing buttons and

switches, and timing. But there‟s one thing the Toy Traffic Lights project does, that hasn‟t been covered yet;

it turns itself “off” (saving power), and comes back “on” at the touch of a button. There is no on/off switch;

the circuit is always powered, and yet the batteries are able to last for years.

That is done by putting the PIC into the power-

saving standby, or sleep mode.

To demonstrate how it is used, we‟ll use the

circuit from lesson 5, shown on the right.

It consists of a PIC12F508 or 509, LEDs on

GP1 and GP2, and a pushbutton switch on

GP3. It can be readily built on Microchip‟s

LPC Demo Board, as described in lesson 1. But

if you want to be able to demonstrate to yourself

that power consumption really is reduced when

the PIC enters sleep mode, you will need to

build the circuit such that you can place a

multimeter inline with the power supply (or use

a power supply with a current display), so that

you can measure the supply current. You could,

for example, easily build this circuit on prototyping breadboard.

The instruction for placing the PIC into standby mode is „sleep‟ – “enter sleep mode”.

http://www.gooligum.com.au/kits/trafficlights/trafficlights.html
http://www.gooligum.com.au/tutorials/PIC_Intro_5.pdf
http://www.gooligum.com.au/tutorials/PIC_Intro_1.pdf

© Gooligum Electronics 2008 www.gooligum.com.au

Baseline PIC Assembler, Lesson 7: Sleep Mode, Watchdog Timer and Clock Options Page 2

To illustrate the use of the sleep instruction, consider the following fragment of code. It turns on the LED on

GP1, waits for the button to be pressed, and then enters sleep mode:

 movlw b'111101' ; configure GP1 (only) as an output

 tris GPIO

 bsf GPIO,1 ; turn on LED

waitlo btfsc GPIO,3 ; wait for button press (low)

 goto waitlo

 sleep ; enter sleep mode

 goto $; (this instruction should never run)

Note that the final „goto $‟ instruction (an endless loop) will never be executed, because „sleep‟ will halt

the processor; any instructions after „sleep‟ will never be reached.

When you run this program, the LED will turn on and then, when you press the button, nothing will appear

to happen! The LED stays on. Shouldn‟t it turn off? What‟s going on?

The current supplied from a 5V supply, before pressing the button, with the LED on, was measured to be

10.83 mA. After pressing the button, the measured current dropped to 10.47 mA, a fall of only 0.36 mA.

This happens because, when the PIC goes into standby mode, the PIC stops executing instructions, saving

some power (360 µA in this case), but the I/O ports remain in the state they were in, before the „sleep‟

instruction was executed.

In this case, the fix is simple – turn off the LED before entering sleep mode, as follows:

 movlw b'111101' ; configure GP1 (only) as an output

 tris GPIO

 bsf GPIO,1 ; turn on LED

waitlo btfsc GPIO,3 ; wait for button press (low)

 goto waitlo

 bcf GPIO,1 ; turn off LED

 sleep ; enter sleep mode

When this program is run, the LED will turn off when the button is pressed.

The current measured in the prototype with the PIC in standby and the LED off was less than 0.1 µA – too

low to register on the multimeter used! That was with the unused pins tied to VDD or VSS (whichever is

most convenient on the circuit board), as floating CMOS inputs will draw unnecessary current.

For clarity, tying the unused inputs to VDD or VSS was not shown in the circuit diagram above.

Note: For low power consumption in standby mode, the I/O ports must be configured to stop

sourcing or sinking current, before entering SLEEP mode.

Note: To minimise power in standby mode, configure all unused pins as inputs, and tie them VDD

or VSS through 10 kΩ resistors. Do not connect them directly to VDD or VSS, as the PIC may be

damaged if these pins are inadvertently configured as outputs.

© Gooligum Electronics 2008 www.gooligum.com.au

Baseline PIC Assembler, Lesson 7: Sleep Mode, Watchdog Timer and Clock Options Page 3

Wake-up from sleep

Most baseline PICs include a facility for coming out of standby mode when an input changes, called wake-up

on change. This is used, for example, in the “Toy Traffic Lights” project to power up the device when the

button on it is pressed.

Wake-up on change is available on the GP0, GP1 and GP3 pins on the PIC12F508/509 (these are the same

pins that internal pull-ups are available for). Note that on the baseline PICs, this is all or nothing; either all

of the available pins are enabled for wake-up on change, or none of them are.

On the PIC12F508/509, wake-up on change is controlled by the GPWU bit in the OPTION register:

By default (after a power-on or reset), GPWU = 1 and wake-up on change is disabled.

To enable internal wake-up on change, clear GPWU .

Assuming no other options are being set (leaving all the other bits at the default value of „1‟), wake-up on

change is enabled by:

 movlw b'01111111' ; enable wake-up on change

 ; 0------- (NOT_GPWU = 0)

 option

If wake-up on change is enabled, the PIC will be reset if, in sleep mode, the value at any of the “wake-up on

change” pins becomes different to the last time those pins were read, prior to entering sleep.

It is also important that any input which will be used to trigger a wake-up is stable before entering sleep

mode. Consider what would happen if wake-up on change was enabled in the program above. As soon as

the button is pressed, the LED will turn off and the PIC will enter standby mode, as intended. But on the

first switch bounce, the input would be seen to have changed, and the PIC would be reset.

Even if the circuit included hardware debouncing, there‟s still a problem: the LED will go off and the PIC

will enter standby as soon as the button is pressed, but when the button is subsequently released, it will be

seen as a change, and the PIC will reset and the LED will come back on! To successfully use the pushbutton

to turn the circuit (PIC and LED) “off”, it is necessary to wait for the button to go high and remain stable

(debounced) before entering sleep mode.

But there‟s still a problem: when the button is pressed while the PIC is in sleep mode, the PIC will reset, and

the LED will light. That‟s what we want. The problem is that PICs are fast, and human fingers are slow –

the button will still be down when the program first checks for “button down”, and the LED will

immediately turn off again. To avoid this, we must wait for the button to be in a stable “up” state before

checking that it is “down”, in case the program is starting following a button press.

So the necessary sequence is:

turn on LED

wait for stable button high

wait for button low

turn off LED

wait for stable button high

sleep

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

OPTION GPWU GPPU T0CS T0SE PSA PS2 PS1 PS0

Note: You should read the input pins configured for wake-up on change just prior to entering

sleep mode. Otherwise, if the value at a pin had changed since the last time it was read, a “wake

up on change” reset will occur immediately upon entering sleep mode, as the input value would

be seen to be different from that last read.

http://www.gooligum.com.au/kits/trafficlights/trafficlights.html

© Gooligum Electronics 2008 www.gooligum.com.au

Baseline PIC Assembler, Lesson 7: Sleep Mode, Watchdog Timer and Clock Options Page 4

The following code, which makes use of the debounce macro defined in lesson 6, implements this:

;***** Initialisation

 movlw ~(1<<nLED) ; configure LED pin (only) as an output

 tris GPIO

 movlw b'01000111' ; configure wake-up on change and Timer0:

 ; 0------- enable wake-up on change (NOT_GPWU = 0)

 ; --0----- timer mode (T0CS = 0)

 ; ----0--- prescaler assigned to Timer0 (PSA = 0)

 ; -----111 prescale = 256 (PS = 111)

 option ; -> increment every 256 us

;***** Main code

 bsf LED ; turn on LED

 DbnceHi BUTTON ; wait for stable button high

 ; (in case restarted after button press)

waitlo btfsc BUTTON ; wait for button press (low)

 goto waitlo

 bcf LED ; turn off LED

 DbnceHi BUTTON ; wait for stable button release

 sleep ; enter sleep mode

 END

(the labels „LED‟ and „BUTTON‟ are defined earlier in the program; see the complete listing below)

This code does essentially the same thing as the “toggle a LED” programs developed in lesson 4, except that

in this case, when the LED is off, the PIC is drawing negligible power.

Since the same start-up instructions are executed, whether the PIC has been powered on for the first time, or

was reset by a wake-up from sleep, how is it possible to tell whether a wake-up on change has occurred?

Of course, that‟s not necessarily important. The program above debounces the pushbutton when it first

starts, just in case it had restarted because of a wake-up from sleep. If the PIC had just been powered on,

there would be no need to do this debouncing, but it doesn‟t hurt to do it anyway – if the button is already up,

then the debounce routine only introduces a 10ms delay.

But sometimes you would like your program to behave differently, depending on why it was (re)started.

You can do that by testing the GPWUF flag bit in the STATUS register:

GPWUF is set to „1‟ by a wake-up on change, and is cleared by all other resets. So if GPWUF has been set,

it means that a wake-up on change reset has occurred.

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

STATUS GPWUF - PA0 TO PD Z DC C

Note: Wake-up from sleep on pin change on baseline PICs causes a processor reset; instruction

execution recommences from the reset vector, as it does following all types of reset, including

power-on. Execution does not resume at the instruction following “sleep”.

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_6.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_4.pdf

© Gooligum Electronics 2008 www.gooligum.com.au

Baseline PIC Assembler, Lesson 7: Sleep Mode, Watchdog Timer and Clock Options Page 5

Complete program

To demonstrate how the GPWUF flag can be tested, to differentiate between wake-up on change and power-

on resets, the following program, based on the code above, lights the LED on GP2 following a wake-up on

change reset, but not when the PIC is first powered on. And since the wake-up on change condition is being

tested anyway, the initial button debounce is only performed if a wake-up on change has occurred. (Note

that the debounce macro is defined in an include file.)

;**

; *

; Description: Lesson 7, example 2b *

; *

; Demonstrates differentiation between wake up on change *

; and POR reset *

; *

; Turn on LED after each reset *

; Turn on WAKE LED only if reset was due to wake on change *

; then wait for button press, turn off LEDs, debounce, then sleep *

; *

;**

 list p=12F509

 #include <p12F509.inc>

 #include <stdmacros-base.inc> ; DbcneHi - debounce switch, wait for high

 radix dec

;***** CONFIGURATION

 ; int reset, no code protect, no watchdog, 4MHz int clock

 __CONFIG _MCLRE_OFF & _CP_OFF & _WDT_OFF & _IntRC_OSC

; pin assignments

 #define LED GPIO,1 ; on/off indicator LED on GP1

 constant nLED=1 ; (port bit 1)

 #define WAKE GPIO,2 ; wake on change indicator LED on GP2

 constant nWAKE=2 ; (port bit 2)

 #define BUTTON GPIO,3 ; pushbutton on GP3 (active low)

;**

RESET CODE 0x000 ; effective reset vector

 movwf OSCCAL ; update OSCCAL with factory cal value

;***** MAIN PROGRAM

;***** Initialisation

start

 movlw ~(1<<nLED|1<<nWAKE) ; configure LED pins as outputs

 tris GPIO

 clrf GPIO ; start with all LEDs off

 movlw b'01000111' ; configure wake-up on change and Timer0:

 ; 0------- enable wake-up on change (NOT_GPWU = 0)

 ; --0----- timer mode (T0CS = 0)

 ; ----0--- prescaler assigned to Timer0 (PSA = 0)

 ; -----111 prescale = 256 (PS = 111)

 option ; -> increment every 256 us

© Gooligum Electronics 2008 www.gooligum.com.au

Baseline PIC Assembler, Lesson 7: Sleep Mode, Watchdog Timer and Clock Options Page 6

;***** Main code

 bsf LED ; turn on LED

 btfss STATUS,GPWUF ; if wake-up on change has occurred,

 goto waitlo

 bsf WAKE ; turn on wake-up indicator

 DbnceHi BUTTON ; wait for stable button high

waitlo btfsc BUTTON ; wait for button press (low)

 goto waitlo

 clrf GPIO ; turn off LEDs

 DbnceHi BUTTON ; wait for stable button release

 sleep ; enter sleep mode

 END

Watchdog Timer

In the real world, computer programs sometimes “crash”; they will stop responding to input, stuck in a

continuous loop they can‟t get out of, and the only way out is to reset the processor (e.g. Ctrl-Alt-Del on

Windows PCs – and even that sometimes won‟t work, and you need to power cycle a PC to bring it back).

Microcontrollers are not immune to this. Their programs can become stuck because some unforseen

sequence of inputs has occurred, or perhaps because an expected input signal never arrives. Or, in the

electrically noisy industrial environment in which microcontrollers are often operating, power glitches and

EMI on signal lines can create an unstable environment, perhaps leading to a crash.

Crashes present a special problem for equipment which is intended to be reliable, operating autonomously, in

environments where user intervention isn‟t an option.

One of the major functions of a watchdog timer is to automatically reset the microcontroller in the event of a

crash. It is simply a free-running timer (running independently of any other processor function, including

sleep) which, if allowed to overflow, will reset the PIC. In normal operation, an instruction which clears the

watchdog timer is regularly executed – often enough to prevent the timer ever overflowing. This instruction

is often placed in the “main loop” of a program, where it would normally be expected to be executed often

enough to prevent watchdog timer overflows. If the program crashes, the main loop presumably won‟t

complete; the watchdog timer won‟t be cleared, and the PIC will be reset. Hopefully, when the PIC restarts,

whatever condition led to the crash will have gone away, and the PIC will resume normal operation.

The instruction for clearing the watchdog timer is „clrwdt‟ – “clear watchdog timer”.

The watchdog timer has a nominal time-out period of 18 ms. If that‟s not long enough, it can be extended by

using the prescaler.

As we saw in lesson 5, the prescaler is configured using a number of bits in the OPTION register:

To assign the prescaler to the watchdog timer, set the PSA bit to „1‟.

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

OPTION GPWU GPPU T0CS T0SE PSA PS2 PS1 PS0

Note: The baseline PICs include a single prescaler, which can be used with either the Timer0

module or the Watchdog Timer, but not both.

If the prescaler is assigned to the Watchdog Timer, it cannot be used with Timer0.

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_5.pdf

© Gooligum Electronics 2008 www.gooligum.com.au

Baseline PIC Assembler, Lesson 7: Sleep Mode, Watchdog Timer and Clock Options Page 7

When assigned to the watchdog timer, the prescale ratio is set by the

PS<2:0> bits, as shown in the table on the right.

Note that the prescale ratios are one half of those that apply when the

prescaler is assigned to Timer0.

For example, if PSA = 1 (assigning the prescaler to the watchdog

timer) and PS<2:0> = „011‟ (selecting a ratio of 1:8), the watchdog

time-out period will be 8 × 18 ms = 144 ms.

With the maximum prescale ratio, the watchdog time-out period is

128 × 18 ms = 2.3 s.

The watchdog timer is controlled by the WDTE bit in the configuration word:

Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

- - - - - - - MCLRE CP WDTE FOSC1 FOSC0

Setting WDTE to „1‟ enables the watchdog timer.

To set WDTE, use the symbol „_WDT_ON‟ instead of „_WDT_OFF‟ in the __CONFIG directive.

Since the configuration word cannot be accessed by programs running on the PIC (it can only be written to

when the PIC is being programmed), the watchdog timer cannot be enabled or disabled at runtime. It

can only be configured to be „on‟ or „off‟ when the PIC is programmed.

Watchdog Timer example

To demonstrate how the watchdog timer allows the PIC to recover from a crash, we‟ll use a simple program

which turns on a LED for 1.0 s, turns it off again, and then enters an endless loop (simulating a crash).

If the watchdog timer is disabled, the loop will never exit and the LED will remain off. But if the watchdog

timer is enabled, with a period of 2.3 s, the program should restart itself after 2.3s, and the LED will flash: on

for 1.0s and off for 1.3s (approximately).

To make it easy to select between configurations with the watchdog timer on or off, you can use a construct

such as:

 #define WATCHDOG ; define to enable watchdog timer

 IFDEF WATCHDOG

 ; ext reset, no code protect, watchdog, 4MHz int clock

 __CONFIG _MCLRE_ON & _CP_OFF & _WDT_ON & _IntRC_OSC

 ELSE

 ; ext reset, no code protect, no watchdog, 4MHz int clock

 __CONFIG _MCLRE_ON & _CP_OFF & _WDT_OFF & _IntRC_OSC

ENDIF

Note that these __CONFIG directives enable external reset („_MCLRE_ON‟), allowing the pushbutton switch

connected to pin 4, to reset the PIC. That‟s useful because, with this program going into an endless loop,

having to power cycle the PIC to restart it would be annoying; pressing the button is much more convenient.

PS<2:0>

bit value

WDT

prescale ratio

000 1 : 1

001 1 : 2

010 1 : 4

011 1 : 8

100 1 : 16

101 1 : 32

110 1 : 64

111 1 : 128

© Gooligum Electronics 2008 www.gooligum.com.au

Baseline PIC Assembler, Lesson 7: Sleep Mode, Watchdog Timer and Clock Options Page 8

The code to flash the LED once and then enter an endless loop is simple, making use of the „DelayMS‟

macro introduced in lesson 6:

; Initialisation

 movlw 1<<PSA | b'111' ; configure watchdog timer:

 ; prescaler assigned to WDT (PSA = 1)

 ; prescale = 128 (PS = 111)

 option ; -> WDT period = 2.3 s

 movlw ~(1<<nLED) ; configure LED pin (only) as an output

 tris GPIO

; Main code

 bsf LED ; turn on LED

 DelayMS 1000 ; delay 1s

 bcf LED ; turn off LED

 goto $; wait forever

If you build and run this with „#define WATCHDOG‟ commented out (place a „;‟ in front of it), the LED

will light once, and then remain off. But if you define „WATCHDOG‟, the LED will continue to flash.

As mentioned in the discussion of “wake-up on change”, sometimes you‟d like your program to behave

differently, depending on why it was restarted. In particular, if, in normal operation, a watchdog timer reset

should never occur, you may wish to turn on an alarm indicator if a watchdog timer reset has happened, to

show that an unexpected problem has occurred.

Watchdog timer resets are indicated by the TO bit in the STATUS register:

The TO bit is cleared to „0‟ by a reset caused by watchdog timer, and is set to „1‟ by power-on reset,

entering sleep mode, or by execution of the „clrwdt‟ instruction.

If TO has been cleared, it means that a watchdog timer reset has occurred.

To demonstrate how the TO flag is used, the code above can be modified, to light the LED if a watchdog

timer reset has occurred, but not when the PIC is first powered on, as follows:

; Initialisation

 movlw 1<<PSA | b'111' ; configure watchdog timer:

 ; prescaler assigned to WDT (PSA = 1)

 ; prescale = 128 (PS = 111)

 option ; -> WDT period = 2.3 s

 movlw ~(1<<nLED|1<<nWDT) ; configure LED pins as outputs

 tris GPIO

 clrf GPIO ; start with all LEDs off

; Main code

 btfss STATUS,NOT_TO ; if WDT timeout has occurred,

 bsf WDT ; turn on "error" LED

 bsf LED ; turn on "flash" LED

 DelayMS 1000 ; delay 1s

 bcf LED ; turn off "flash" LED

 goto $; wait forever

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

STATUS GPWUF - PA0 TO PD Z DC C

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_6.pdf

© Gooligum Electronics 2008 www.gooligum.com.au

Baseline PIC Assembler, Lesson 7: Sleep Mode, Watchdog Timer and Clock Options Page 9

Of course, you will normally want to avoid watchdog timer resets.

As discussed earlier, to prevent the watchdog timer timing out, simply place a „clrwdt‟ instruction within

the main loop, with the watchdog timer period set to be longer than it should ever take to complete the loop.

To demonstrate that the „clrwdt‟ instruction really does stop the watchdog expiring (if executed often

enough), simply include it in the endless loop at the end of the code:

loop clrwdt ; clear watchdog timer

 goto loop ; repeat forever

If you replace the „goto $‟ line with this “clear watchdog timer” loop, you will find that, after flashing

once, the LED remains off – regardless of the watchdog timer setting.

Periodic wake from sleep

The watchdog timer can also be used to wake the PIC from sleep mode.

This is useful in situations where inputs do not need to be responded to instantly, but can be checked

periodically. To minimise power drain, the PIC can sleep most of the time, waking up every so often (say,

once per second), checking inputs and, if there is nothing to do, going back to sleep.

Note that a periodic wake-up can be combined with wake-up on pin change; you may for example wish to

periodically log the value of a sensor, but also respond immediately to button presses.

Setting up a periodic wake-up is easy: simply configure the watchdog timer for the desired wake-up period,

perform the “main code” tasks (testing and responding to inputs), then enter sleep mode. When the

watchdog timer period has elapsed, the PIC will wake up, perform the main tasks, and then go to sleep again.

To illustrate this process, we can simply replace the endless loop with a „sleep‟ instruction:

; Initialisation

 movlw 1<<PSA | b'111' ; configure watchdog timer:

 ; prescaler assigned to WDT (PSA = 1)

 ; prescale = 128 (PS = 111)

 option ; -> WDT period = 2.3 s

 movlw ~(1<<nLED) ; configure LED pin (only) as an output

 tris GPIO

; Main code

 bsf LED ; turn on LED

 DelayMS 1000 ; delay 1s

 bcf LED ; turn off LED

 sleep ; enter sleep mode

You‟ll find that the LED is on for 1s, and then off for around 2 s. That is because the watchdog timer is

cleared automatically when the PIC enters sleep mode.

Clock Options

Every example in these lessons, until now, has used the 4 MHz internal RC oscillator as the PIC‟s clock

source. It‟s usually a very good option – simple to use, needing no external components, using none of the

PIC pins, and reasonably accurate.

However, there are situations where it is more appropriate to use some external clock circuitry.

© Gooligum Electronics 2008 www.gooligum.com.au

Baseline PIC Assembler, Lesson 7: Sleep Mode, Watchdog Timer and Clock Options Page 10

Reasons to use external clock circuitry include:

 Greater accuracy and stability.

A crystal or ceramic resonator is significantly more accurate than the internal RC oscillator, with less

frequency drift due to temperature and voltage variations.

 Generating a specific frequency.

For example, as we saw in lesson 5, the signal from a 32.768 kHz crystal can be readily divided

down to 1Hz. Or, to produce accurate timing for RS-232 serial data transfers, a crystal frequency

such as 1.843200 MHz can be used, since it is an exact multiple of common baud rates, such as

38400 or 9600 (1843200 = 48 × 38400 = 192 × 9600).

 Synchronising with other components.

Sometimes it simplifies design if a number of microcontrollers (or other chips) are clocked from a

common source, so that their outputs change synchronously – although you need to be careful; clock

signals which are subject to varying delays in a circuit will not be synchronised in practice (a

phenomenon known as clock skew), leading to unpredictable results.

 Lower power consumption.

At a given supply voltage, PICs draw less current when they are clocked at a lower speed. For

example, the PIC12F508/509 data sheet states (parameter D010) that, with VDD = 2.0 V, supply

current is typically 170 µA for a clock speed of 4MHz, but only 15 µA at 32 kHz.

Power consumption can be minimised by running the PIC at the slowest practical clock speed. And

for many applications, very little speed is needed.

PICs support a number of clock, or oscillator, configurations, allowing, through appropriate oscillator

selection, any of these goals to be met (but not necessarily all at once – low power consumption and high

frequencies don‟t mix!)

The oscillator configuration is selected by the FOSC bits in the configuration word:

The PIC12F508 and 509 have two FOSC bits, allowing

selection of one of four oscillator configurations, as in the

table on the right.

The internal RC oscillator is the one we have been using so

far, providing a nominal 4MHz internal clock source, and

has already been discussed.

The other oscillator options are described in detail in the

PIC12F508/509 data sheet, as well as in a number of

application notes available on the Microchip web site,

www.microchip.com. As mentioned in lesson 5, oscillator design can be something of a black art!

Instead of needlessly repeating all that material here, the following sections outline some of the most

common oscillator configurations.

Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

- - - - - - - MCLRE CP WDTE FOSC1 FOSC0

FOSC<1:0> Oscillator configuration

00 LP oscillator

01 XT oscillator

10 Internal RC oscillator

11 External RC oscillator

http://www.microchip.com/
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_5.pdf

© Gooligum Electronics 2008 www.gooligum.com.au

Baseline PIC Assembler, Lesson 7: Sleep Mode, Watchdog Timer and Clock Options Page 11

External clock input

An external oscillator can be used to clock the PIC.

As discussed above, this is sometimes done so that the timing of

various parts of a circuit is synchronised to the same clock

signal. Or, you may choose to use an existing external clock

signal simply because it is available and is more accurate and

stable than the PIC‟s internal RC oscillator – assuming

you can afford the loss of two of the PIC‟s I/O

pins.

Lesson 5 included the design for a

32.768 kHz crystal oscillator, as shown

in the circuit on the right. We can use it

to demonstrate how to use an external

clock signal.

To use an external oscillator with the

PIC12F508 or 509, the PIC has to be

configured in either „LP‟ or „XT‟ oscillator

mode. You should use „LP‟ for frequencies below around 200 kHz, and „XT‟ for higher frequencies.

The clock signal is connected to the CLKIN input: pin 2 on a PIC12F508/509.

When using an external clock signal in the „LP‟ and „XT‟ oscillator modes, the OSC2 pin (pin 3 on a

PIC12F508/509) is unused; it is left disconnected and the associated I/O port (GP4) is not available for use.

Many PICs, such as the 16F505, offer an „EC‟ (external clock) oscillator mode, which leaves the OSC2 pin

available for I/O. But that‟s not an option on the 12F508/509.

To illustrate the operation of this circuit, we can modify the crystal-driven LED flasher program developed

in lesson 5. In that program, the external 32.768 kHz signal was used to drive the Timer0 counter.

Now, however, the 32.768 kHz signal is driving the processor clock, giving an instruction clock rate of 8192

Hz. If Timer0 is configured in timer mode with a 1:32 prescale ratio, TMR0<7> will be cycling at exactly 1

Hz (since 8192 = 32 × 256) – as is assumed in the main body of the program from lesson 5.

Therefore, to adapt that program for this circuit, all we need to do is to change the configuration statement

from:

__CONFIG _MCLRE_ON & _CP_OFF & _WDT_OFF & _IntRC_OSC

to:

__CONFIG _MCLRE_ON & _CP_OFF & _WDT_OFF & _LP_OSC

(The _XT_OSC option should be used instead of _LP_OSC for higher clock frequencies)

And also to change the initialisation code from:

 movlw b'11110110' ; configure Timer0:

 ; --1----- counter mode (T0CS = 1)

 ; ----0--- prescaler assigned to Timer0 (PSA = 0)

 ; -----110 prescale = 128 (PS = 110)

 option ; -> increment at 256 Hz with 32.768 kHz input

to:

 movlw b'11010100' ; select Timer0:

 ; --0----- timer mode (T0CS = 0)

 ; ----0--- prescaler assigned to Timer0 (PSA = 0)

 ; -----100 prescale = 32 (PS = 100)

 option ; -> increment at 256 Hz with 32.768 kHz clock

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_5.pdf

© Gooligum Electronics 2008 www.gooligum.com.au

Baseline PIC Assembler, Lesson 7: Sleep Mode, Watchdog Timer and Clock Options Page 12

With these changes made, the LED on GP1 should flash at almost exactly 1 Hz – to within the accuracy of

the crystal oscillator.

Crystals and ceramic resonators

Generally, there is no need to build your own crystal oscillator; PICs include an oscillator circuit designed to

drive crystals directly.

A parallel (not serial) cut crystal, or a ceramic resonator, is placed

between the OSC1 and OSC2 pins, which are grounded via loading

capacitors, as shown in the circuit diagram on the right.

Typical values for the loading capacitors are given in the

PIC datasheets, but you should consult the crystal or

resonator manufacturer‟s data to be sure.

For some crystals it may be necessary to

reduce the current drive by placing a resistor

between OSC2 and the crystal, but in most

cases it is not needed, and the circuit shown

here can be used.

The PIC12F508/509 provides two crystal

oscillator modes: „XT‟ and „LP‟.

They differ in the gain and frequency response of the drive circuitry.

„XT‟ (“crystal”) is the mode used most commonly for crystal or ceramic

resonators operating between 200 kHz and 4 MHz.

Lower frequencies generally require lower gain. The „LP‟ (“low power”) mode uses less power and is

designed to drive common 32.786 kHz “watch” crystals, as used in the external clock circuit above, although

it can also be used with other low-frequency crystals or resonators.

The circuit as shown here can be used to operate the PIC12F508/509 at 32.768 kHz, giving low power

consumption and an 8192 Hz instruction clock rate, which, as in the external clock example, is easily divided

to create an accurate 1 Hz signal.

To flash the LED at 1 Hz, the program is exactly the same as for the external clock, except that the

configuration statement must include the _LP_OSC option:

__CONFIG _MCLRE_ON & _CP_OFF & _WDT_OFF & _LP_OSC

A convenient option, when you want greater accuracy

and stability than the internal RC oscillator can provide,

but do not need as much as that offered by a crystal, is

to use a ceramic resonator.

These are particularly convenient because

they are available in 3-terminal packages

which include appropriate loading capacitors,

as shown in the circuit diagram on the right.

The resonator package incorporates the

components within the dashed lines.

Usually the built-in loading capacitors are

adequate and no additional components are

needed, other than the 3-pin resonator

package.

© Gooligum Electronics 2008 www.gooligum.com.au

Baseline PIC Assembler, Lesson 7: Sleep Mode, Watchdog Timer and Clock Options Page 13

Complete program

To test this circuit, we can use the “flash an LED” program developed in lesson 2; the only necessary change

is to replace the _IntRC_OSC configuration option with _XT_OSC, to select crystal oscillator mode.

However, in lesson 2 we concluded that, since the internal RC oscillator is only accurate to within 1% or so,

there was no reason to strive for precise loop timing; a delay of 499.958 ms was considered close enough to

the desired 500 ms.

In this case, given that we are using a more accurate oscillator, driven by a crystal or ceramic resonator, it is

worth the effort to be more precise. Therefore in the following program an additional short loop and some

nop instructions have been added to pad out the total loop time to exactly 500,000 instruction cycles, which

will be as close to 500 ms as the accuracy of the crystal or resonator allows, as shown:

;**

; *

; Description: Lesson 7, example 4b *

; *

; Demonstrates use of 4 Mhz external clock (crystal or resonator) *

; *

; LED on GP1 flashes at 1 Hz (50% duty cycle), *

; with timing derived from 1 MHz instruction clock *

; *

;**

 list p=12F509

 #include <p12F509.inc>

 radix dec

;***** CONFIGURATION

 ; ext reset, no code protect, no watchdog, crystal osc

 __CONFIG _MCLRE_ON & _CP_OFF & _WDT_OFF & _XT_OSC

; pin assignments

 constant nLED=1 ; flashing LED on GP1

;***** VARIABLE DEFINITIONS

VARS UDATA_SHR

sGPIO res 1 ; shadow copy of GPIO

dc1 res 1 ; delay loop counters

dc2 res 1

;**

RESET CODE 0x000 ; effective reset vector

 movwf OSCCAL ; update OSCCAL with factory cal value

;***** MAIN PROGRAM

;***** Initialisation

startn

 movlw ~(1<<nLED) ; configure LED pin (only) as an output

 tris GPIO

 clrf GPIO ; start with GPIO clear (LED off)

 clrf sGPIO ; update shadow register

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_2.pdf
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_2.pdf

© Gooligum Electronics 2008 www.gooligum.com.au

Baseline PIC Assembler, Lesson 7: Sleep Mode, Watchdog Timer and Clock Options Page 14

;***** Main loop

flash

 ; toggle LED

 movf sGPIO,w

 xorlw 1<<nLED ; flip shadow of LED pin bit

 movwf sGPIO

 movwf GPIO ; write to GPIO

 ; delay 500ms

 movlw .244 ; outer loop: 244 x (1023 + 1023 + 3) + 2

 movwf dc2 ; = 499,958 cycles

 clrf dc1 ; inner loop: 256 x 4 - 1

dly1 nop ; inner loop 1 = 1023 cycles

 decfsz dc1,f

 goto dly1

dly2 nop ; inner loop 2 = 1023 cycles

 decfsz dc1,f

 goto dly2

 decfsz dc2,f

 goto dly1

 movlw .11 ; delay another 11 x 3 - 1 + 2 = 34 cycles

 movwf dc2 ; -> delay so far = 499,958 + 34

dly3 decfsz dc2,f ; = 499,992 cycles

 goto dly3

 nop ; main loop overhead = 6 cycles, so add 2 nops

 nop ; -> loop time = 499,992 + 6 + 2 = 500,000 cycles

 goto flash ; repeat forever

 END

External RC oscillator

Finally, a low-cost, low-power option: the baseline

PICs can be made to oscillate with timing derived

from an external resistor and capacitor, as shown on

the right.

External RC oscillators, with appropriate values of R

and C, are used when a very low clock rate can be

used – drawing significantly less power than when

the internal 4 MHz RC oscillator is used.

It can also simplify some programming tasks when

the PIC is run slowly, needing fewer, shorter delay

loops.

The external RC oscillator is a relaxation type. The

capacitor is charged through the resistor, the voltage

v at the OSC1 pin rising with time t according to the

formula:







 


RC

t

DD eVv 1

The voltage increases until it reaches a threshold, typically 0.75 × VDD. A transistor is then turned on, which

quickly discharges the capacitor until the voltage falls to approx. 0.25 × VDD. The capacitor then begins

charging through the resistor again, and the cycle repeats.

© Gooligum Electronics 2008 www.gooligum.com.au

Baseline PIC Assembler, Lesson 7: Sleep Mode, Watchdog Timer and Clock Options Page 15

This is illustrated by the following oscilloscope trace, recorded at the OSC1 pin in the circuit above, with

the component values shown:

In theory, assuming upper and lower thresholds of 0.75 × VDD and 0.25 × VDD, the period of oscillation is

equal to 1.1 × RC (in seconds, with R in Ohms and C in Farads).

In practice, the capacitor discharge is not instantaneous (and of course it can never be), so the period is a

little longer than this. Microchip does not commit to a specific formula for the frequency (or period) of the

external RC oscillator, only stating that it is a function of VDD, R, C and temperature, and in some

documents providing some reference charts. But for rough design guidance, you can assume the period of

oscillation is approximately 1.2 × RC.

Microchip recommends keeping R between 5 kΩ and 100 kΩ, and C above 20 pF.

In the circuit above, R = 10 kΩ and C = 82 nF. Those values will give a period of approximately:

 1.2 × 10×10
3
 × 82×10

-9
 s = 984 µs

Inverting that gives 1016 Hz.

In practice, the measured frequency was 1052 Hz; reasonably close, but the lesson should be clear: don‟t use

an external RC oscillator if you want high accuracy or good stability.

So, given a roughly 1 kHz clock, what can we do with it? Flash an LED, of course!

Using a similar approach to before, we can use the instruction clock (approx. 256 Hz) to increment Timer0.

In fact, with a prescale ratio of 1:256, TMR0 will increment at approx. 1 Hz.

Only use an external RC oscillator if the exact clock rate is unimportant.

© Gooligum Electronics 2008 www.gooligum.com.au

Baseline PIC Assembler, Lesson 7: Sleep Mode, Watchdog Timer and Clock Options Page 16

TMR0<0> would then cycle at 0.5 Hz, TMR0<1> at 0.25 Hz, etc.

Now consider what happens when the prescale ratio is set to 1:64. TMR0 will increment at 4 Hz, TMR0<0>

will cycle at 2 Hz, and TMR0<1> will cycle at 1 Hz, etc.

And that suggests a very simple way to make the LED on GP1 flash at 1Hz. If we continually copy TMR0

to GPIO, each bit of GPIO will continually reflect each corresponding bit of TMR0. In particular,

GPIO<1> will always be set to the same value as TMR0<1>. Since TMR0<1> is cycling at 1 Hz,

GPIO<1> (and hence GP1) will also cycle at 1 Hz.

Complete program

The following program implements the approach described above. Note that the external RC oscillator is

selected by using the option _ExtRC_OSC in the configuration statement.

The “main loop” is only three instructions long – by far the shortest “flash an LED” program we have done

so far, illustrating how a slow clock rate can sometimes simplify some programming problems.

On the other hand, it is also the least accurate of the “flash an LED” programs, being only approximately 1

Hz. But for many applications, the exact speed doesn‟t matter; it only matters that the LED visibly flashes.

;**

; Description: Lesson 7, example 4c *

; *

; Demonstrates use of external RC oscillator (~1 kHz) *

; *

; LED on GP1 flashes at approx 1 Hz (50% duty cycle), *

; with timing derived from instruction clock *

; *

;**

; Pin assignments: *

; GP1 - flashing LED *

; *

;**

 list p=12F509

 #include <p12F509.inc>

 radix dec

;***** CONFIGURATION

 ; ext reset, no code protect, no watchdog, external RC osc

 __CONFIG _MCLRE_ON & _CP_OFF & _WDT_OFF & _ExtRC_OSC

;**

RESET CODE 0x000 ; effective reset vector

 movwf OSCCAL ; update OSCCAL with factory cal value

;***** MAIN PROGRAM

;***** Initialisation

start

 movlw b'111101' ; configure GP1 (only) as output

 tris GPIO

 movlw b'11010101' ; configure Timer0:

 ; --0----- timer mode (T0CS = 0)

 ; ----0--- prescaler assigned to Timer0 (PSA = 0)

 ; -----101 prescale = 64 (PS = 101)

 option ; -> increment at 4 Hz with 1 kHz clock

© Gooligum Electronics 2008 www.gooligum.com.au

Baseline PIC Assembler, Lesson 7: Sleep Mode, Watchdog Timer and Clock Options Page 17

;***** Main loop

loop ; TMR0<1> cycles at 1 Hz

 ; so continually copy to GP1

 movf TMR0,w ; copy TMR0 to GPIO

 movwf GPIO

 ; repeat forever

 goto loop

 END

That completes our coverage of the PIC12F508/509.

To introduce further topics, we need a larger device. In the next lesson we‟ll move onto the 14-pin version

of the 12F508/509, the 16F505, and see how to use lookup tables (and those extra pins) to drive 7-segment

displays, and how to use multiplexing to drive multiple displays.

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_8.pdf

	Introduction to PIC Programming
	Baseline Architecture and Assembly Language
	Lesson 7: Sleep Mode, the Watchdog Timer and Clock Options
	Sleep Mode
	Wake-up from sleep
	Complete program

	Watchdog Timer
	Watchdog Timer example
	Periodic wake from sleep

	Clock Options
	External clock input
	Crystals and ceramic resonators
	Complete program

	External RC oscillator
	Complete program

